Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
Institut de Recerca i Tecnologia Agroalimentàries, Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
Genome Biol Evol. 2018 Jun 1;10(6):1584-1595. doi: 10.1093/gbe/evy115.
Transposable elements (TEs) are a major driver of plant genome evolution. A part from being a rich source of new genes and regulatory sequences, TEs can also affect plant genome evolution by modifying genome size and shaping chromosome structure. TEs tend to concentrate in heterochromatic pericentromeric regions and their proliferation may expand these regions. Here, we show that after the split of melon and cucumber, TEs have expanded the pericentromeric regions of melon chromosomes that, probably as a consequence, show a very low recombination frequency. In contrast, TEs have not proliferated to a high extent in cucumber, which has small TE-dense pericentromeric regions and shows a relatively constant recombination rate along chromosomes. These differences in chromosome structure also translate in differences in gene nucleotide diversity. Although gene nucleotide diversity is essentially constant along cucumber chromosomes, melon chromosomes show a bimodal pattern of genetic variability, with a gene-poor region where variability is negatively correlated with gene density. Interestingly, genes are not homogeneously distributed in melon, and the high variable low-recombining pericentromeric regions show a higher concentration of melon-specific genes whereas genes shared with cucumber and other plants are essentially found in gene-rich chromosomal arms. The results presented here suggest that melon pericentromeric regions may allow gene sequences to evolve more freely than in other chromosomal compartments which may allow new ORFs to arise and eventually be selected. These results show that TEs can drastically change the structure of chromosomes creating different chromosomal compartments imposing different constraints for gene evolution.
转座元件 (TEs) 是植物基因组进化的主要驱动力。除了作为新基因和调控序列的丰富来源外,TEs 还可以通过改变基因组大小和塑造染色体结构来影响植物基因组的进化。TEs 倾向于集中在异染色质着丝粒区域,它们的增殖可能会扩大这些区域。在这里,我们表明在甜瓜和黄瓜分裂后,TEs 已经扩展了甜瓜染色体的着丝粒区域,这可能导致这些区域的重组频率非常低。相比之下,TEs 在黄瓜中并没有大量增殖,黄瓜的着丝粒区域 TE 密度较小,并且沿着染色体显示出相对稳定的重组率。这些染色体结构的差异也反映在基因核苷酸多样性的差异上。尽管基因核苷酸多样性在黄瓜染色体上基本保持不变,但甜瓜染色体显示出基因多样性的双峰模式,基因贫乏区域的基因多样性与基因密度呈负相关。有趣的是,基因在甜瓜中并不是均匀分布的,高变低重组的着丝粒区域集中了更多的甜瓜特异性基因,而与黄瓜和其他植物共享的基因则主要存在于基因丰富的染色体臂中。这里呈现的结果表明,甜瓜着丝粒区域可能允许基因序列比其他染色体区室更自由地进化,这可能允许新的 ORF 出现并最终被选择。这些结果表明,TEs 可以极大地改变染色体的结构,创造不同的染色体区室,为基因进化施加不同的限制。