Department of Chemistry and Chemical Theory Center , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.
Computational Chemistry, Modeling and Simulation , The Procter & Gamble Company , 8256 Union Centre Blvd , West Chester , Ohio 45069 , United States.
Langmuir. 2018 Jul 17;34(28):8245-8254. doi: 10.1021/acs.langmuir.8b00687. Epub 2018 Jul 9.
Understanding solute uptake into soft microstructured materials, such as bilayers and worm-like and spherical micelles, is of interest in the pharmaceutical, agricultural, and personal care industries. To obtain molecular-level insight on the effects of solutes loading into a lamellar phase, we utilize the Shinoda-Devane-Klein (SDK) coarse-grained force field in conjunction with configurational-bias Monte Carlo simulations in the osmotic Gibbs ensemble. The lamellar phase is comprised of a bilayer formed by triethylene glycol mono- n-decyl ether (C10E3) surfactants surrounded by water with a 50:50 surfactant/water weight ratio. We study both the unary adsorption isotherm and the effects on bilayer structure and stability caused by n-nonane, 1-hexanol, and ethyl butyrate at several different reduced reservoir pressures. The nonpolar n-nonane molecules load near the center of the bilayer. In contrast, the polar 1-hexanol and ethyl butyrate molecules both load with their polar bead close to the surfactant head groups. Near the center of the bilayer, none of the solute molecules exhibits a significant orientational preference. Solute molecules adsorbed near the polar groups of the surfactant chains show a preference for orientations perpendicular to the interface, and this alignment with the long axis of the surfactant molecules is most pronounced for 1-hexanol. Loading of n-nonane leads to an increase of the bilayer thickness, but does not affect the surface area per surfactant. Loading of polar additives leads to both lateral and transverse swelling. The reduced Henry's law constants of adsorption (expressed as a molar ratio of additive to surfactant per reduced pressure) are 0.23, 1.4, and 14 for n-nonane, 1-hexanol, and ethyl butyrate, respectively, and it appears that the SDK force field significantly overestimates the ethyl butyrate-surfactant interactions.
了解溶质在软质微结构材料(如双层和蠕虫状及球形胶束)中的吸收对于制药、农业和个人护理行业具有重要意义。为了在层状相中获得有关溶质负载的分子水平的见解,我们利用 Shinoda-Devane-Klein(SDK)粗粒度力场,并在渗透压 Gibbs 系综中使用构象偏压蒙特卡罗模拟。层状相由三甘醇单-n-癸基醚(C10E3)表面活性剂形成的双层组成,周围是 50:50 的表面活性剂/水重量比的水。我们研究了二元吸附等温线以及在几种不同的还原储层压力下,正十一烷、1-己醇和丁酸乙酯对双层结构和稳定性的影响。非极性正十一烷分子负载在双层的中心附近。相比之下,极性 1-己醇和丁酸乙酯分子都将其极性珠靠近表面活性剂的头基负载。在双层的中心附近,没有溶质分子表现出明显的取向偏好。吸附在表面活性剂链的极性基团附近的溶质分子表现出垂直于界面的取向偏好,并且这种与表面活性剂分子长轴的对齐对于 1-己醇最为明显。正十一烷的负载会导致双层厚度增加,但不会影响每个表面活性剂的表面积。极性添加剂的负载会导致横向和横向膨胀。吸附的亨利定律常数(表示为每降低压力的添加剂与表面活性剂的摩尔比)分别为 0.23、1.4 和 14,对于正十一烷、1-己醇和丁酸乙酯,并且 SDK 力场似乎明显高估了丁酸乙酯-表面活性剂相互作用。