Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA.
Neuroscience Graduate Program, Oregon Health and Sciences University, Portland, OR 97239, USA.
Brain Res. 2018 Oct 15;1697:45-52. doi: 10.1016/j.brainres.2018.06.013. Epub 2018 Jun 12.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene. In the absence of MeCP2, expression of FXYD domain-containing transport regulator 1 (FXYD1) is deregulated in the frontal cortex (FC) of mice and humans. Because Fxyd1 is a membrane protein that controls cell excitability by modulating Na, K-ATPase activity (NKA), an excess of Fxyd1 may reduce NKA activity and contribute to the neuronal phenotype of Mecp2 deficient (KO) mice. To determine if Fxyd1 can rescue these RTT deficits, we studied the male progeny of Fxyd1 null males bred to heterozygous Mecp2 female mice. Maximal NKA enzymatic activity was not altered by the loss of MeCP2, but it increased in mice lacking one Fxyd1 allele, suggesting that NKA activity is under Fxyd1 inhibitory control. Deletion of one Fxyd1 allele also prevented the increased extracellular potassium (K) accumulation observed in cerebro-cortical neurons from Mecp2 KO animals in response to the NKA inhibitor ouabain, and rescued the loss of dendritic arborization observed in FC neurons of Mecp2 KO mice. These effects were gene-dose dependent, because the absence of Fxyd1 failed to rescue the MeCP2-dependent deficits, and mimicked the effect of MeCP2 deficiency in wild-type animals. These results indicate that excess of Fxyd1 in the absence of MeCP2 results in deregulation of endogenous K conductances functionally associated with NKA and leads to stunted neuronal growth.
雷特综合征(RTT)是一种由 MECP2 基因突变引起的神经发育障碍。在缺乏 MeCP2 的情况下,FXYD 结构域包含的转运调节剂 1(FXYD1)在小鼠和人类的额皮质(FC)中的表达失调。由于 Fxyd1 是一种通过调节 Na、K-ATP 酶活性(NKA)来控制细胞兴奋性的膜蛋白,过量的 Fxyd1 可能会降低 NKA 活性并导致 Mecp2 缺陷(KO)小鼠的神经元表型。为了确定 Fxyd1 是否可以挽救这些 RTT 缺陷,我们研究了杂合 Mecp2 雌性小鼠与 Fxyd1 缺失雄性的雄性后代。最大 NKA 酶活性不受 MeCP2 缺失的影响,但在缺乏一个 Fxyd1 等位基因的小鼠中增加,表明 NKA 活性受到 Fxyd1 的抑制控制。缺失一个 Fxyd1 等位基因也阻止了在 NKA 抑制剂哇巴因作用下从 Mecp2 KO 动物的脑皮质神经元中观察到的细胞外钾(K)积累增加,并挽救了在 Mecp2 KO 小鼠的 FC 神经元中观察到的树突分支丧失。这些效应是基因剂量依赖性的,因为 Fxyd1 的缺失未能挽救 MeCP2 依赖性缺陷,并模拟了野生型动物中 MeCP2 缺失的效应。这些结果表明,在缺乏 MeCP2 的情况下,过量的 Fxyd1 导致与 NKA 功能相关的内源性 K 电导失调,并导致神经元生长停滞。