Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.
CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.
Sci Rep. 2022 Apr 19;12(1):6471. doi: 10.1038/s41598-022-10365-y.
FXYD1 is a key protein controlling ion channel transport. FXYD1 exerts its function by regulating Na/K-ATPase activity, mainly in brain and cardiac tissues. Alterations of the expression level of the FXYD1 protein cause diastolic dysfunction and arrhythmias in heart and decreased neuronal dendritic tree and spine formation in brain. Moreover, FXYD1, a target of MeCP2, plays a crucial role in the pathogenesis of the Rett syndrome, a neurodevelopmental disorder. Thus, the amount of FXYD1 must be strictly controlled in a tissue specific manner and, likely, during development. Epigenetic modifications, particularly DNA methylation, represent the major candidate mechanism that may regulate Fxyd1 expression. In the present study, we performed a comprehensive DNA methylation analysis and mRNA expression level measurement of the two Fxyd1 transcripts, Fxyd1a and Fxyd1b, in brain and heart tissues during mouse development. We found that DNA methylation at Fxyd1a increased during brain development and decreased during heart development along with coherent changes in mRNA expression levels. We also applied ultra-deep methylation analysis to detect cell to cell methylation differences and to identify possible distinct methylation profile (epialleles) distribution between heart and brain and in different developmental stages. Our data indicate that the expression of Fxyd1 transcript isoforms inversely correlates with DNA methylation in developing brain and cardiac tissues suggesting the existence of a temporal-specific epigenetic program. Moreover, we identified a clear remodeling of epiallele profiles which were distinctive for single developmental stage both in brain and heart tissues.
FXYD1 是一种控制离子通道转运的关键蛋白。FXYD1 通过调节 Na/K-ATPase 的活性来发挥其功能,主要在脑和心脏组织中。FXYD1 蛋白表达水平的改变会导致心脏舒张功能障碍和心律失常,以及脑神经元树突和棘突形成减少。此外,作为 MeCP2 的靶标,FXYD1 在神经发育障碍的雷特综合征的发病机制中起着至关重要的作用。因此,FXYD1 的数量必须在组织特异性和可能的发育过程中得到严格控制。表观遗传修饰,特别是 DNA 甲基化,是可能调节 Fxyd1 表达的主要候选机制。在本研究中,我们在小鼠发育过程中对脑和心脏组织中的两个 Fxyd1 转录本 Fxyd1a 和 Fxyd1b 进行了全面的 DNA 甲基化分析和 mRNA 表达水平测量。我们发现,FxyD1a 的 DNA 甲基化在大脑发育过程中增加,在心脏发育过程中减少,同时 mRNA 表达水平也发生了相应的变化。我们还应用超深度甲基化分析来检测细胞间的甲基化差异,并识别心脏和大脑之间以及不同发育阶段可能存在的不同甲基化模式(表观等位基因)分布。我们的数据表明,FxyD1 转录本异构体的表达与发育中脑和心脏组织的 DNA 甲基化呈负相关,表明存在一个特定于时间的表观遗传程序。此外,我们还发现了明显的表观等位基因图谱重塑,这些图谱在脑和心脏组织的单个发育阶段都是独特的。