Suppr超能文献

治疗性单克隆抗体的仪表盘:学习与确认。

Dashboards for Therapeutic Monoclonal Antibodies: Learning and Confirming.

机构信息

Projections Research Inc., 535 Springview Lane, Phoenixville, Pennsylvania, 19460, USA.

Australian Centre for Pharmacometrics, University of South Australia, Adelaide, SA, 5000, Australia.

出版信息

AAPS J. 2018 Jun 14;20(4):76. doi: 10.1208/s12248-018-0237-2.

Abstract

Inflammatory diseases (ID) are incurable, progressive diseases. Literature evidence cites increasing incidence of these diseases worldwide. When treatments with chemical immunosuppressive agents fail, patients are often treated with monoclonal antibodies (MAbs). However, MAb failure rates are generally high, with approximately half the patients being discontinued within 4 years, necessitating switching to another MAb. One potential cause of treatment failure is subtherapeutic exposure. Several studies demonstrated associations between trough MAb concentrations and clinical response, supporting the notion that improving drug exposure may result in improved outcomes. MAbs exhibit complex and highly variable pharmacokinetics in ID patients with numerous factors affecting clearance. Bayesian-guided dosing with dashboard systems is a new tool being investigated in the treatment of ID to reduce variability in exposure. Simulations suggest dashboards will be effective at maintaining patients at target troughs. However, when patients are dosed using doses or intervals outside those listed in prescribing information, there is concern that patients may have drug exposures beyond or below the ranges found to be safe and efficacious. This manuscript reviews the rationale behind dashboard development, evaluations of expected performance, and a simulated assessment of MAb exposure with dashboard-based dosing versus dosing based on the prescribing information. We introduce the concept of pharmacologic equivalence-if patients are dosed based on individual pharmacokinetics, the resulting exposure is consistent with exposures achieved using labeled dosing. We further show that dashboard-based dosing results in observed exposures that are generally contained within the range of exposures achieved with labeled dosing.

摘要

炎症性疾病(ID)是无法治愈的、进行性疾病。文献证据表明,这些疾病在全球范围内的发病率正在上升。当化学免疫抑制剂治疗失败时,患者通常会接受单克隆抗体(MAb)治疗。然而,MAb 的失败率通常很高,大约有一半的患者在 4 年内停止治疗,需要更换另一种 MAb。治疗失败的一个潜在原因是治疗药物暴露量不足。多项研究表明,MAb 谷浓度与临床反应之间存在相关性,支持这样一种观点,即提高药物暴露量可能会改善治疗结果。ID 患者的 MAb 表现出复杂且高度可变的药代动力学特性,许多因素会影响清除率。贝叶斯引导的剂量调整和仪表盘系统是一种新的治疗 ID 的工具,旨在减少暴露量的变异性。模拟表明,仪表盘将有效地将患者维持在目标谷浓度。然而,当患者按照处方信息中未列出的剂量或间隔进行给药时,人们担心患者的药物暴露量可能会超出或低于已确定的安全有效范围。本文回顾了开发仪表盘的基本原理、预期性能的评估以及基于仪表盘给药与基于处方信息给药的 MAb 暴露量的模拟评估。我们引入了药效学等效性的概念——如果根据个体药代动力学为患者进行给药,则得到的暴露量与使用标签剂量所达到的暴露量一致。我们进一步表明,基于仪表盘的给药导致的观察到的暴露量通常包含在使用标签剂量所达到的暴露量范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验