Suppr超能文献

通过整合展望辐射传输模型,在大豆功能结构植物模型中对叶片光谱特性进行建模。

Modelling leaf spectral properties in a soybean functional-structural plant model by integrating the prospect radiative transfer model.

机构信息

Plant Sciences Unit, Institute of Agricultural, Fisheries and Food Research (ILVO), Melle, Belgium.

Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.

出版信息

Ann Bot. 2018 Sep 24;122(4):669-676. doi: 10.1093/aob/mcy105.

Abstract

BACKGROUND AND AIMS

Currently, functional-structural plant models (FSPMs) mostly resort to static descriptions of leaf spectral characteristics, which disregard the influence of leaf physiological changes over time. In many crop species, including soybean, these time-dependent physiological changes are of particular importance as leaf chlorophyll content changes with leaf age and vegetative nitrogen is remobilized to the developing fruit during pod filling.

METHODS

PROSPECT, a model developed to estimate leaf biochemical composition from remote sensing data, is well suited to allow a dynamic approximation of leaf spectral characteristics in terms of leaf composition. In this study, measurements of the chlorophyll content index (CCI) were linked to leaf spectral characteristics within the 400-800 nm range by integrating the PROSPECT model into a soybean FSPM alongside a wavelength-specific light model.

KEY RESULTS

Straightforward links between the CCI and the parameters of the PROSPECT model allowed us to estimate leaf spectral characteristics with high accuracy using only the CCI as an input. After integration with an FSPM, this allowed digital reconstruction of leaf spectral characteristics on the scale of both individual leaves and the whole canopy. As a result, accurate simulations of light conditions within the canopy were obtained.

CONCLUSIONS

The proposed approach resulted in a very accurate representation of leaf spectral properties, based on fast and simple measurements of the CCI. Integration of accurate leaf spectral characteristics into a soybean FSPM leads to a better, dynamic understanding of the actual perceived light within the canopy in terms of both light quantity and quality.

摘要

背景与目的

目前,功能结构植物模型(FSPM)大多依赖于对叶片光谱特征的静态描述,而忽略了叶片随时间发生的生理变化的影响。在包括大豆在内的许多作物物种中,这些随时间变化的生理变化非常重要,因为叶片叶绿素含量会随叶片年龄而变化,而在荚果形成期间,营养氮会从营养器官转移到发育中的果实。

方法

PROSPECT 是一个从遥感数据估算叶片生化组成的模型,非常适合通过将 PROSPECT 模型与特定波长的光模型相结合,对叶片组成的叶片光谱特征进行动态近似。在这项研究中,将 PROSPECT 模型集成到大豆 FSPM 中,通过将叶绿素含量指数(CCI)的测量值与 400-800nm 范围内的叶片光谱特征联系起来,同时建立了一个特定波长的光模型。

主要结果

CCI 与 PROSPECT 模型参数之间的直接联系使得我们仅使用 CCI 作为输入,就能非常准确地估算叶片光谱特征。与 FSPM 集成后,可以在单个叶片和整个冠层尺度上对叶片光谱特征进行数字重建。因此,获得了冠层内光照条件的精确模拟。

结论

该方法基于 CCI 的快速简单测量,实现了叶片光谱特性的非常准确表示。将准确的叶片光谱特征集成到大豆 FSPM 中,可以更好地动态了解冠层内实际感知到的光量和光质。

相似文献

本文引用的文献

4
Regulation of leaf senescence and crop genetic improvement.调控叶片衰老与作物遗传改良。
J Integr Plant Biol. 2012 Dec;54(12):936-52. doi: 10.1111/jipb.12005.
6
Modelling photo-modulated internode elongation in growing glasshouse cucumber canopies.建模温室黄瓜冠层中光调控节间伸长。
New Phytol. 2011 May;190(3):697-708. doi: 10.1111/j.1469-8137.2010.03617.x. Epub 2011 Jan 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验