Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
Laboratoire de Chimie Physique, Université Paris-Sud, UMR 8000, 91405 Orsay, France.
Phys Rev Lett. 2018 Jun 1;120(22):227401. doi: 10.1103/PhysRevLett.120.227401.
We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ∼400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.
我们报告了在单链寡聚噻吩段中光诱导激子迁移的高维量子动力学模拟,以期阐明半导体聚合物中基本激子输运步骤的争议性质。采用了一种新颖的基于第一性原理参数化的 Frenkel J 聚集体哈密顿量,其远远超出了标准的 Frenkel-Holstein 哈密顿量。这些模拟从光激发产生的非平衡态出发,提供了低温下超快双时间尺度过程的证据,其中包括在几十飞秒(fs)内形成激子极化子,然后在大约 400 fs 的时间尺度上进行扭转松弛。第二步是激子迁移的驱动力,因为初始共轭断裂通过动态平面化被消除。基本激子迁移步骤的量子相干性质与实验观察结果一致,突出了超快时间尺度上的动力学的相关性和振动相干性。