School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
Phys Rev E. 2018 May;97(5-1):053307. doi: 10.1103/PhysRevE.97.053307.
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
虽然随机场伊辛模型的基态问题是多项式的,可以使用许多著名的最大流或图割算法来解决,但类似的随机场 Potts 模型对应于多端流问题,这是众所周知的 NP 难问题。因此,高效的精确算法极不可能存在。正如我们在这里所展示的,尽管如此,仍然可以使用将二进制自由度嵌入到 Potts 自旋中,结合图割方法,以便在多项式时间内近似地解决相应的基态问题。我们使用从长时间并行温度运行中为小系统找到的一组准基态来对这个启发式算法进行基准测试。对于不太大量的 Potts 态 q,基于图割的方法可以在一小部分时间内找到相同的解。我们使用新技术来分析二维随机场 Potts 模型的破裂长度。