School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom.
Physics Department, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev E. 2019 Sep;100(3-1):033303. doi: 10.1103/PhysRevE.100.033303.
We introduce tensor network contraction algorithms for the evaluation of the Jones polynomial of arbitrary knots. The value of the Jones polynomial of a knot is reduces to the partition function of a q-state anisotropic Potts model with complex interactions, which is defined on a planar signed graph that corresponds to the knot. For any integer q, we cast this partition function into tensor network form, which inherits the interaction graph structure of the Potts model instance, and employ fast tensor network contraction protocols to obtain the exact tensor trace and thus the value of the Jones polynomial. By sampling random knots via a grid-walk procedure and computing the full tensor trace exactly, we demonstrate numerically that the Jones polynomial can be evaluated in time that scales subexponentially with the number of crossings in the typical case. This allows us to evaluate the Jones polynomial of knots that are too complex to be treated with other available methods. Our results establish tensor network methods as a practical tool for the study of knots.
我们引入张量网络收缩算法来评估任意纽结的琼斯多项式。纽结的琼斯多项式的值可归结为具有复相互作用的 q 态各向异性 Potts 模型的配分函数,该配分函数定义在对应于纽结的平面有符号图上。对于任意整数 q,我们将这个配分函数写成张量网络的形式,它继承了 Potts 模型实例的相互作用图结构,并采用快速张量网络收缩协议来获得精确的张量迹,从而得到琼斯多项式的值。通过网格漫步过程随机抽样纽结,并精确计算全张量迹,我们数值上证明了在典型情况下,琼斯多项式的评估时间可以以亚指数级的速度随交叉数的增加而增加。这使得我们能够评估那些用其他现有方法处理过于复杂的纽结的琼斯多项式。我们的结果确立了张量网络方法作为研究纽结的实用工具。