Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA.
Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA.
Curr Biol. 2023 Feb 27;33(4):780-789.e4. doi: 10.1016/j.cub.2023.01.020. Epub 2023 Feb 1.
Insects use their antennae to smell odors, detect auditory cues, and sense mechanosensory stimuli such as wind and objects, frequently by combining sensory processing with active movements. Genetic access to antennal motor systems would therefore provide a powerful tool for dissecting the circuit mechanisms underlying active sensing, but little is known about how the most genetically tractable insect, Drosophila melanogaster, moves its antennae. Here, we use deep learning to measure how tethered Drosophila move their antennae in the presence of sensory stimuli and identify genetic reagents for controlling antennal movement. We find that flies perform both slow adaptive movements and fast flicking movements in response to wind-induced deflections, but not the attractive odor apple cider vinegar. Next, we describe four muscles in the first antennal segment that control antennal movements and identify genetic driver lines that provide access to two groups of antennal motor neurons and an antennal muscle. Through optogenetic inactivation, we provide evidence that antennal motor neurons contribute to active movements with different time courses. Finally, we show that activation of antennal motor neurons and muscles can adjust the gain and acuity of wind direction encoding by antennal displacement. Together, our experiments provide insight into the neural control of antennal movement and suggest that active antennal positioning in Drosophila may tune the precision of wind encoding.
昆虫利用触角来感知气味、探测听觉线索,并感知机械感觉刺激,如风和物体,通常通过将感觉处理与主动运动相结合来实现。因此,对触角运动系统进行基因操作将为解析主动感知的电路机制提供强大的工具,但对于最具遗传可操作性的昆虫——黑腹果蝇——如何移动其触角,我们知之甚少。在这里,我们使用深度学习来测量束缚状态下果蝇如何在感觉刺激存在的情况下移动它们的触角,并鉴定控制触角运动的遗传试剂。我们发现,果蝇会对风引起的偏转而做出缓慢的适应性运动和快速的拍打运动,但不会对有吸引力的气味苹果醋做出反应。接下来,我们描述了控制触角运动的第一个触角节的四个肌肉,并鉴定了提供对两组触角运动神经元和一个触角肌肉访问权限的遗传驱动线。通过光遗传学失活,我们提供了证据表明触角运动神经元对具有不同时间进程的主动运动有贡献。最后,我们表明,触角运动神经元和肌肉的激活可以通过触角位移来调整风向编码的增益和灵敏度。总的来说,我们的实验提供了对触角运动神经控制的深入了解,并表明果蝇的主动触角定位可能会调整风向编码的精度。