Department of Mathematics, Bankura University, Bankura 722155, India.
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, India.
Math Biosci. 2018 Aug;302:116-130. doi: 10.1016/j.mbs.2018.06.001. Epub 2018 Jun 15.
We present a mathematical model which describes the growth of malignant gliomas in presence of immune responses by considering the role of immunotherapeutic agent T11 target structure (T11TS). The model consider five populations, namely, glioma cells, macrophages, cytotoxic T-lymphocytes, TGF - β and IFN - γ. The model system has highly nonlinear terms with four discrete time lags, but remains tractable. The goal of this work is to better understand the effect of multiple delays on the interaction between gliomas and immune components in conjunction with an administration of T11 target structure. Analytically, we investigate the conditions for the asymptotic stability of equilibrium points, the existence of Hopf bifurcations and the maximum value of the delay to preserve the stability of limit cycle. For the set of parameter values estimated from experimental data, time delays have hardly any influence on the system behavior. Numerical simulations are carried out to investigate the dynamics of the model with different values for delays with and without administration of T11 target structure.
我们提出了一个数学模型,通过考虑免疫治疗剂 T11 靶结构(T11TS)的作用,描述了恶性神经胶质瘤在免疫反应存在下的生长情况。该模型考虑了五种群体,即神经胶质瘤细胞、巨噬细胞、细胞毒性 T 淋巴细胞、TGF-β和 IFN-γ。模型系统具有高度非线性项和四个离散时滞,但仍具有可处理性。这项工作的目的是更好地了解多个时滞与 T11 靶结构联合给药对神经胶质瘤和免疫成分相互作用的影响。从分析的角度来看,我们研究了平衡点渐近稳定性的条件、Hopf 分支的存在以及保持极限环稳定性的最大时滞。对于从实验数据估计的参数值集,时滞对系统行为几乎没有任何影响。进行了数值模拟,以研究在有和没有 T11 靶结构给药的情况下,不同时滞值下模型的动力学。