Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; VIB, Center for Microbiology, Leuven, Belgium.
Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium; VIB, Center for Microbiology, Leuven, Belgium.
Curr Opin Microbiol. 2018 Aug;44:1-8. doi: 10.1016/j.mib.2018.05.002. Epub 2018 Jun 13.
With the vast majority of the microbial world still considered unculturable or undiscovered, microbiologists not only require more fundamental insights concerning microbial growth requirements but also need to implement miniaturized, versatile and high-throughput technologies to upscale current microbial isolation strategies. In this respect, single-cell-based approaches are increasingly finding their way to the microbiology lab. A number of recent studies have demonstrated that analysis and separation of free microbial cells by flow-based sorting as well as physical stochastic confinement of individual cells in microenvironment compartments can facilitate the isolation of previously uncultured species and the discovery of novel microbial taxa. Still, while most of these methods give immediate access to downstream whole genome sequencing, upscaling to higher cell densities as required for metabolic readouts and preservation purposes can remain challenging. Provided that these and other technological challenges are addressed in future innovation rounds, integration of single-cell tools in commercially available benchtop instruments and service platforms is expected to trigger more targeted explorations in the microbial dark matter at a depth comparable to metagenomics.
由于绝大多数微生物世界仍被认为是无法培养或未被发现的,微生物学家不仅需要更深入地了解微生物的生长需求,还需要实施小型化、多功能和高通量的技术,以扩大当前的微生物分离策略。在这方面,基于单细胞的方法正逐渐进入微生物学实验室。最近的一些研究表明,通过基于流动的分选对游离微生物细胞进行分析和分离,以及在微环境隔室中对单个细胞进行物理随机限制,可以促进以前无法培养的物种的分离和新的微生物类群的发现。尽管这些方法中的大多数方法可以立即进行下游全基因组测序,但为了进行代谢读数和保存目的而提高细胞密度仍然具有挑战性。如果在未来的创新周期中解决了这些和其他技术挑战,那么单细胞工具的集成将有望在商业上可用的台式仪器和服务平台中实现,从而在类似于宏基因组学的深度上更有针对性地探索微生物暗物质。