Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands.
Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, 9052 Zwijnaarde, Belgium.
J Control Release. 2018 Aug 28;284:73-83. doi: 10.1016/j.jconrel.2018.06.010. Epub 2018 Jun 15.
Potent adjuvants are highly demanded for most protein and peptides based vaccine candidates in clinical development. Recognition of viral single stranded (ss)RNA by innate toll-like receptors 7/8 in dendritic cells results in a cytokine environment supportive to the establishment of long lasting antibody responses and Th1 oriented T cell immunity. To fully exploit the immunestimulatory properties of ssRNA, it needs to be adequately formulated to ensure its optimal delivery to dendritic cells in the vaccine draining lymph nodes. In the present paper, we report on the design of ssRNA nanocomplexes formed by complexation of the cationic poly(carbonic acid 2-dimethylamino-ethyl ester 1-methyl-2-(2-methacryloylamino)-ethyl ester) (pHPMA-DMAE) based polymeric carrier and ssRNA. The resulting ssRNA nanocomplexes were subsequently PEGylated through copper-free click chemistry using PEG-bicyclo[6.1.0]nonyne (PEG-BCN) and cross-linked via disulfide bonds to increase their stability. The obtained near-neutral charged PEGylated ssRNA nanocomplexes (~150 nm) combined ssRNA protection with highly efficient delivery of ssRNA to DCs in the vaccine draining lymph nodes after subcutanuously administration. When co-administrated with a model antigen (soluble ovalbumin (OVA)), ssRNA nanocomplexes were far more efficient at inducing CD8 cytolytic T cells when compared to OVA co-adminstarted with naked ssRNA. Furthermore, IgG2c antibody titers, indicative of Th1 skewed T cell responses, were >10 times increased by complexing ssRNA into the PEGylated nanocomplexes. This study highlights the potential of post-functionalizing ssRNA nanocomplexes by copper-free click chemistry and these findings indcate that this potent ssRNA adjuvant may profoundly improve the efficacy of a variety of vaccines requiring Th1-type immunity.
对于大多数处于临床开发阶段的基于蛋白质和肽的疫苗候选物,都需要使用强效佐剂。树突状细胞中先天 Toll 样受体 7/8 识别病毒单链 (ss)RNA,导致细胞因子环境有利于建立持久的抗体反应和 Th1 定向的 T 细胞免疫。为了充分利用 ssRNA 的免疫刺激特性,需要对其进行适当的配方设计,以确保其在疫苗引流淋巴结中的树突状细胞中的最佳传递。在本研究中,我们报告了通过将阳离子聚(碳酸 2-二甲氨基乙酯 1-甲基-2-(2-丙烯酰氨基)-乙基酯)(pHPMA-DMAE)基于聚合物载体与 ssRNA 络合而形成的 ssRNA 纳米复合物的设计。随后,通过铜自由点击化学使用聚乙二醇-双环[6.1.0]壬炔(PEG-BCN)对所得 ssRNA 纳米复合物进行 PEG 化,并通过二硫键交联以增加其稳定性。所得带近中性电荷的 PEG 化 ssRNA 纳米复合物(~150nm)结合了 ssRNA 保护和 ssRNA 高效递送至皮下给药后引流淋巴结中的树突状细胞。当与模型抗原(可溶性卵清蛋白(OVA))共给药时,与裸 ssRNA 共给药相比,ssRNA 纳米复合物更有效地诱导 CD8 细胞毒性 T 细胞。此外,ssRNA 络合到 PEG 化纳米复合物中使 IgG2c 抗体滴度(指示 Th1 偏向的 T 细胞反应)增加了 10 倍以上。本研究强调了通过铜自由点击化学对 ssRNA 纳米复合物进行后功能化的潜力,并表明这种有效的 ssRNA 佐剂可能会极大地提高需要 Th1 型免疫的各种疫苗的疗效。