Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France.
Laboratoire d'Intégration du Matériau au Système (IMS), UMR CNRS 5218, Univ. Bordeaux, Bordeaux INP, 33400 Talence, France.
Biosens Bioelectron. 2018 Oct 15;117:253-259. doi: 10.1016/j.bios.2018.06.015. Epub 2018 Jun 8.
On-line and real-time analysis of micro-organ activity permits to use the endogenous analytical power of cellular signal transduction algorithms as biosensors. We have developed here such a sensor using only a few pancreatic endocrine islets and the avoidance of transgenes or chemical probes reduces bias and procures general usage. Nutrient and hormone-induced changes in islet ion fluxes through channels provide the first integrative read-out of micro-organ activity. Using extracellular electrodes we captured this read-out non-invasively as slow potentials which reflect glucose concentration-dependent (3-15 mM) micro-organ activation and coupling. Custom-made PDMS-based microfluidics with platinum black micro-electrode arrays required only some tens of islets and functioned at flow rates of 1-10 µl/min which are compatible with microdialysis. We developed hardware solutions for on-line real-time analysis on a reconfigurable Field-Programmable Gate Array (FPGA) that offered resource-efficient architecture and storage of intermediary processing stages. Moreover, real-time adaptive and reconfigurable algorithms accounted for signal disparities and noise distribution. Based on islet slow potentials, this integrated set-up allowed within less than 40 μs the discrimination and precise automatic ranking of small increases (2 mM steps) of glucose concentrations in real time and within the physiological glucose range. This approach shall permit further development in continuous monitoring of the demand for insulin in type 1 diabetes as well as monitoring of organs-on-chip or maturation of stem-cell derived islets.
在线实时分析微生物活性可利用细胞信号转导算法的内源性分析能力作为生物传感器。我们仅使用少量胰腺内分泌胰岛开发了这种传感器,并避免使用转基因或化学探针,从而减少了偏差并确保了其通用性。营养和激素诱导的胰岛离子通道通量变化为微生物活性提供了第一个综合读出。我们使用细胞外电极无创地捕获这种读出,作为反映葡萄糖浓度依赖性(3-15 mM)微生物激活和偶联的慢电位。基于 PDMS 的定制微流控装置与铂黑微电极阵列配合使用,仅需要数十个胰岛,工作流速为 1-10 µl/min,与微透析兼容。我们为可重新配置的现场可编程门阵列 (FPGA) 上的在线实时分析开发了硬件解决方案,该解决方案提供了资源高效的架构和中间处理阶段的存储。此外,实时自适应和可重新配置的算法考虑了信号差异和噪声分布。基于胰岛慢电位,该集成装置允许在不到 40 µs 的时间内实时和在生理葡萄糖范围内对葡萄糖浓度的小增加(2 mM 步长)进行区分和精确自动排序。这种方法将允许进一步开发用于 1 型糖尿病胰岛素需求的连续监测,以及用于器官芯片或干细胞衍生胰岛成熟的监测。