Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France.
Tecnológico Nacional de México/I.T. La Laguna, Torreón, Mexico.
Front Endocrinol (Lausanne). 2022 Apr 22;13:795225. doi: 10.3389/fendo.2022.795225. eCollection 2022.
In diabetes mellitus (DM) treatment, Continuous Glucose Monitoring (CGM) linked with insulin delivery becomes the main strategy to improve therapeutic outcomes and quality of patients' lives. However, Blood Glucose (BG) regulation with CGM is still hampered by limitations of algorithms and glucose sensors. Regarding sensor technology, current electrochemical glucose sensors do not capture the full spectrum of other physiological signals, ., lipids, amino acids or hormones, relaying the general body status. Regarding algorithms, variability between and within patients remains the main challenge for optimal BG regulation in closed-loop therapies. This work highlights the simulation benefits to test new sensing and control paradigms which address the previous shortcomings for Type 1 Diabetes (T1D) closed-loop therapies. The UVA/Padova T1DM Simulator is the core element here, which is a computer model of the human metabolic system based on glucose-insulin dynamics in T1D patients. That simulator is approved by the US Food and Drug Administration (FDA) as an alternative for pre-clinical testing of new devices and closed-loop algorithms. To overcome the limitation of standard glucose sensors, the concept of an islet-based biosensor, which could integrate multiple physiological signals through electrical activity measurement, is assessed here in a closed-loop insulin therapy. This investigation has been addressed by an interdisciplinary consortium, from endocrinology to biology, electrophysiology, bio-electronics and control theory. In parallel to the development of an islet-based closed-loop, it also investigates the benefits of robust control theory against the natural variability within a patient population. Using 4 meal scenarios, numerous simulation campaigns were conducted. The analysis of their results then introduces a discussion on the potential benefits of an Artificial Pancreas (AP) system associating the islet-based biosensor with robust algorithms.
在糖尿病(DM)治疗中,连续血糖监测(CGM)与胰岛素输送相结合成为改善治疗效果和提高患者生活质量的主要策略。然而,CGM 对血糖(BG)的调节仍然受到算法和葡萄糖传感器的限制。就传感器技术而言,目前的电化学葡萄糖传感器无法捕捉到其他生理信号的全谱,例如脂质、氨基酸或激素,从而反映出整体身体状况。就算法而言,患者之间和患者内部的可变性仍然是闭环治疗中优化 BG 调节的主要挑战。这项工作强调了模拟的好处,可用于测试新的传感和控制范式,以解决用于 1 型糖尿病(T1D)闭环治疗的先前传感器和控制范式的缺点。UVA/Padova T1DM 模拟器是这里的核心要素,它是一个基于 T1D 患者血糖-胰岛素动力学的人体代谢系统计算机模型。该模拟器已获得美国食品和药物管理局(FDA)的批准,可作为新型设备和闭环算法临床前测试的替代方法。为了克服标准葡萄糖传感器的局限性,评估了基于胰岛的生物传感器的概念,该传感器可以通过电活动测量来整合多种生理信号,用于闭环胰岛素治疗。这项研究由内分泌学、生物学、电生理学、生物电子学和控制理论等多学科的联合研究小组进行。在开发基于胰岛的闭环系统的同时,还研究了稳健控制理论对患者群体内自然变异性的好处。使用 4 种进餐场景进行了多次模拟活动。然后,对其结果的分析引出了关于将基于胰岛的生物传感器与稳健算法相结合的人工胰腺(AP)系统的潜在好处的讨论。