Suppr超能文献

从 CO 还原中利用盐度梯度能源驱动微生物电合成有价值的化学品。

Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO reduction.

机构信息

Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.

Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.

出版信息

Water Res. 2018 Oct 1;142:396-404. doi: 10.1016/j.watres.2018.06.013. Epub 2018 Jun 14.

Abstract

Biological conversion of CO to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO-to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m d, respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO capture and electrosynthesis of valuable chemicals.

摘要

将 CO 生物转化为高附加值化学品和生物燃料,已成为应对过度依赖化石燃料所带来的能源和环境问题的一种有吸引力的策略。在这项研究中,开发了一种创新的微生物反向电渗析电解池(MREC),它结合了反向电渗析(RED)和微生物电合成技术平台的优势,利用盐度梯度能作为驱动能源,实现了高效的 CO 到有价值化学品的生物转化。在 MREC 中,利用 Sporomusa ovata 在阴极催化,分别获得了 477.5 ± 33.2mg/L 和 46.2 ± 8.2mg/L 的最大乙酸和乙醇浓度,其产率分别为 165.79 ± 11.52mmol/m³/d 和 25.11 ± 4.46mmol/m³/d。电子平衡分析表明,来自废水和盐度梯度的电子中有 94.4 ± 3.9%被回收用于生成乙酸和乙醇。这项工作首次证明了创新的 MREC 配置具有作为同时捕获 CO 和电合成有价值化学品的有效技术平台的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验