Suppr超能文献

利用占有度探测模型从道路死亡数据预测野生动物的道路穿越概率。

Predicting wildlife road-crossing probability from roadkill data using occupancy-detection models.

机构信息

Department of Ecology, University of Brasília-UnB, Brasília, Federal District, Brazil; IBRAM - Instituto Brasília Ambiental, Brasília, Federal District, Brazil.

CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Portugal; CEABN/InBio, Centro de Ecologia Aplicada "Professor Baeta Neves", Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.

出版信息

Sci Total Environ. 2018 Nov 15;642:629-637. doi: 10.1016/j.scitotenv.2018.06.107. Epub 2018 Jun 14.

Abstract

Wildlife-vehicle collisions (WVC) represent a major threat for wildlife and understanding how WVC spatial patterns relate to surrounding land cover can provide valuable information for deciding where to implement mitigation measures. However, these relations may be heavily biased as many casualties are undetected in roadkill surveys, e.g. due to scavenger activity, which may ultimately jeopardize conservation actions. We suggest using occupancy models to overcome imperfect detection issues, assuming that 'occupancy' represents the preference for crossing the road in a given site, i.e. is a proxy for the roadkill risk; and that the 'detectability' is the joint probability of an animal being hit in the crossing site and its carcass being detected afterwards. Our main objective was to assess the roadkill risk along roads while accounting for imperfect detection issues and relate it to land cover information. We conducted roadkill surveys over 114 km in nine different roads, biweekly, for five years (total of 484 surveys), and developed a Bayesian hierarchical occupancy model to assess the roadkill risk for the six most road-killed taxa for each road section and season (WET and DRY). Overall, we estimated a higher roadkill risk in road sections surrounded by agriculture, open habitats; and a higher detectability within the 4-lane road sections. Our modeling framework has a great potential to overcome the limitations related to imperfect detection when assessing the roadkill risk and may become an important tool to predict which road sections have a higher mortality risk.

摘要

野生动物与机动车碰撞(WVC)对野生动物构成了重大威胁,了解 WVC 的空间格局与周围土地覆盖的关系可以为决定在何处实施缓解措施提供有价值的信息。然而,由于在道路死亡调查中许多伤亡事件未被发现,例如由于食腐动物的活动,这些关系可能存在严重的偏差,这最终可能危及保护行动。我们建议使用占用模型来克服不完善的检测问题,假设“占用”代表在给定地点穿越道路的偏好,即代表道路死亡风险的替代指标;并且“可检测性”是动物在穿越地点被击中及其尸体随后被检测到的联合概率。我们的主要目标是评估道路沿线的道路死亡风险,同时考虑不完善的检测问题,并将其与土地覆盖信息相关联。我们在九条不同的道路上进行了 114 公里的道路死亡调查,每两周进行一次,为期五年(共进行了 484 次调查),并开发了贝叶斯分层占用模型来评估每个道路段和季节(湿季和干季)的六种最易发生道路死亡的分类单元的道路死亡风险。总体而言,我们估计在农业、开阔栖息地环绕的道路段中,道路死亡风险更高;在四车道道路段中,可检测性更高。我们的建模框架在评估道路死亡风险时具有克服不完善检测相关限制的巨大潜力,并且可能成为预测哪些道路段具有更高死亡率风险的重要工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验