CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Portugal; Centro de Ecologia Aplicada "Professor Baeta Neves" (CEABN), InBio, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal; Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain.
Instituto de Conservação de Animais Silvestres (ICAS), Rua Licuala 622, 79046150, Campo Grande, Mato Grosso do Sul, Brazil; Nashville Zoo, 3777 Nolensville Pike, Nashville, TN 37211, USA.
J Environ Manage. 2019 Oct 15;248:109320. doi: 10.1016/j.jenvman.2019.109320. Epub 2019 Jul 31.
We modelled the spatiotemporal patterns of road mortality for seven medium-large mammals, using a roadkill dataset from Mato Grosso do Sul, Brazil (800 km of roads surveyed every two weeks, for two years). We related roadkill presence-absence along the road sections (1000 m) and across the survey dates with a collection of environmental variables, including land cover, forest cover, distance to rivers, temperature, precipitation and vegetation productivity. We further included two variables aiming to reflect the intrinsic spatial and temporal roadkill risk. Environmental variables were obtained through remote sensing and weather stations, allowing the estimate of the roadkill risk for the entire surveyed roads and survey periods. Overall, the models could explain a small fraction of the spatiotemporal patterns of roadkills (<0.23), probably due to species being habitat generalists, but still had reasonable discrimination power (AUC averaging 0.70 ± 0.07). The intrinsic spatial and temporal roadkill risk were the most important variables, followed by land cover, climate and NDVI. We show that identifying spatiotemporal roadkill patterns may provide valuable information to define specific management actions focused on road sections and time periods, in complement to permanent road mitigation measures. Our approach thus offers a new insight into the understanding of road effects and how to plan and strategize monitoring and mitigation.
我们使用巴西南马托格罗索州的一项道路死亡数据集(每两周对 800 公里的道路进行调查,为期两年),对七种中大型哺乳动物的道路死亡时空模式进行建模。我们将道路沿线(1000 米)和调查日期的道路死亡存在与否与一系列环境变量相关联,包括土地覆盖、森林覆盖、河流距离、温度、降水和植被生产力。我们还包括两个旨在反映内在时空道路死亡风险的变量。环境变量通过遥感和气象站获得,允许估算整个调查道路和调查期间的道路死亡风险。总体而言,这些模型可以解释道路死亡时空模式的一小部分(<0.23),这可能是由于物种是生境的普通物种,但仍具有合理的区分能力(AUC 平均为 0.70±0.07)。内在的时空道路死亡风险是最重要的变量,其次是土地覆盖、气候和 NDVI。我们表明,识别道路死亡的时空模式可能提供有价值的信息,以确定针对道路路段和时间段的具体管理行动,补充永久性的道路缓解措施。因此,我们的方法为理解道路影响以及如何规划和制定监测和缓解策略提供了新的视角。