Jörges Björn, Hagenfeld Lena, López-Moliner Joan
Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Ps. Vall d'Hebron 171, 08035 Barcelona, Catalonia, Spain.
Department of Movement Science, Institute of Sport and Exercise Sciences, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany.
Vision Res. 2018 Aug;149:47-58. doi: 10.1016/j.visres.2018.06.002. Epub 2018 Jun 21.
Evidence suggests that humans rely on an earth gravity prior for sensory-motor tasks like catching or reaching. Even under earth-discrepant conditions, this prior biases perception and action towards assuming a gravitational downwards acceleration of 9.81 m/s. This can be particularly detrimental in interactions with virtual environments employing earth-discrepant gravity conditions for their visual presentation. The present study thus investigates how well humans discriminate visually presented gravities and which cues they use to extract gravity from the visual scene. To this end, we employed a Two-Interval Forced-Choice Design. In Experiment 1, participants had to judge which of two presented parabolas had the higher underlying gravity. We used two initial vertical velocities, two horizontal velocities and a constant target size. Experiment 2 added a manipulation of the reliability of the target size. Experiment 1 shows that participants have generally high discrimination thresholds for visually presented gravities, with weber fractions of 13 to beyond 30%. We identified the rate of change of the elevation angle (ẏ) and the visual angle (θ) as major cues. Experiment 2 suggests furthermore that size variability has a small influence on discrimination thresholds, while at the same time larger size variability increases reliance on ẏ and decreases reliance on θ. All in all, even though we use all available information, humans display low precision when extracting the governing gravity from a visual scene, which might further impact our capabilities of adapting to earth-discrepant gravity conditions with visual information alone.
有证据表明,人类在诸如接球或伸手等感觉运动任务中依赖地球引力先验。即使在与地球引力不同的条件下,这种先验也会使感知和行动偏向于假设重力向下加速度为9.81米/秒²。这在与采用与地球引力不同的视觉呈现的虚拟环境交互时可能特别有害。因此,本研究调查了人类对视觉呈现的重力的辨别能力有多强,以及他们从视觉场景中提取重力所使用的线索。为此,我们采用了二间隔强迫选择设计。在实验1中,参与者必须判断两个呈现的抛物线中哪一个具有更高的潜在重力。我们使用了两个初始垂直速度、两个水平速度和一个恒定的目标大小。实验2增加了对目标大小可靠性的操纵。实验1表明,参与者对视觉呈现的重力通常具有较高的辨别阈值,韦伯分数在13%到超过30%之间。我们确定仰角变化率(ẏ)和视角(θ)是主要线索。实验2还表明,大小变异性对辨别阈值的影响较小,而同时较大的大小变异性会增加对ẏ的依赖并减少对θ的依赖。总而言之,尽管我们利用了所有可用信息,但人类在从视觉场景中提取主导重力时表现出较低的精度,这可能会进一步影响我们仅通过视觉信息适应与地球引力不同的重力条件的能力。