Suppr超能文献

通过化学动力学模型预测均相催化臭氧化过程中微污染物的去除。

Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model.

机构信息

School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.

School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.

出版信息

Water Res. 2018 Oct 1;142:383-395. doi: 10.1016/j.watres.2018.06.019. Epub 2018 Jun 14.

Abstract

Prediction of micropollutant abatements by catalytic ozonation is critical for its process design and optimization in water treatment. In this study, a chemical kinetic model based on ozone (O) and hydroxyl radical (OH) rate constants (k and k) and O and OH exposures is proposed for the generalized prediction of micropollutant abatement by homogeneous catalytic ozonation. Several micropollutants with k ranging from <0.15 to 1.0 × 10 M s were spiked in water matrices (deionized water and surface water) and then treated by ozonation alone and homogeneous catalytic ozonation with varying transition metals (Ti, Co, Ni, Zn, Cu, Mn, Fe, and Fe). The addition of the varying catalysts enhanced the kinetics and yield of OH formation from O decomposition to different extent. Consequently, for the same applied O doses, higher OH exposures can generally be obtained at the expense of lower O exposures during catalytic ozonation with the varying catalysts compared to ozonation alone. The changes in O and OH exposures did not considerably influence the abatement of micropollutants with high and moderate O reactivities (diclofenac, gemfibrozil, and bezafibrate), whose abatement efficiencies were generally >90% during both ozonation alone and catalytic ozonation with the varying catalysts. In contrast, ozone-resistant micropollutants (2,4-dichlorophenoxyacetic acid, clofibric acid, and ibuprofen) were less effectively abated during ozonation (∼40-60% abatement), and the addition of the varying catalysts could enhance their absolute abatement efficiencies to various extent (∼0-10% in the deionized water and ∼0-22% in the surface water) during catalytic ozonation. Despite the differing catalytic mechanisms of the varying transition metals, the abatement efficiencies of micropollutants by catalytic ozonation could be satisfactorily predicted by the chemical kinetic model using the O and OH rate constants of the micropollutants reported in literature and the O and OH exposures determined during the treatment processes. These results demonstrate that the chemical kinetic model can provide a useful tool for the generalized prediction of micropollutant abatement by homogeneous catalytic ozonation.

摘要

催化臭氧化法去除水中微量污染物的效果预测对于其在水处理中的工艺设计和优化至关重要。本研究提出了一种基于臭氧(O)和羟基自由基(OH)速率常数(k 和 k)以及 O 和 OH 暴露的化学动力学模型,用于均相催化臭氧化法去除水中微量污染物的广义预测。将一系列 k 值范围为<0.15 至 1.0×10 M s 的微量污染物加入去离子水和地表水基质中,然后单独进行臭氧化和不同过渡金属(Ti、Co、Ni、Zn、Cu、Mn、Fe 和 Fe)的均相催化臭氧化处理。不同催化剂的添加在不同程度上增强了 O 分解产生 OH 的动力学和产率。因此,与单独臭氧化相比,在相同的 O 投加量下,在催化臭氧化过程中使用不同的催化剂通常可以获得更高的 OH 暴露,同时 O 暴露更低。O 和 OH 暴露的变化并没有显著影响高反应性(二氯芬酸、吉非贝齐和贝扎贝特)和中反应性(双氯芬酸、吉非贝齐和贝扎贝特)微量污染物的去除效率,这些微量污染物在单独臭氧化和使用不同催化剂的催化臭氧化过程中的去除效率一般都>90%。相比之下,臭氧抗性微量污染物(2,4-二氯苯氧乙酸、氯贝酸和布洛芬)在臭氧化过程中去除效率较低(去除率约为 40-60%),而添加不同的催化剂可以在不同程度上提高它们的绝对去除效率(在去离子水中约为 0-10%,在地表水中约为 0-22%)在催化臭氧化过程中。尽管不同过渡金属的催化机制不同,但使用文献报道的微量污染物的 O 和 OH 速率常数以及处理过程中确定的 O 和 OH 暴露值,通过化学动力学模型可以很好地预测催化臭氧化法去除微量污染物的效率。这些结果表明,该化学动力学模型可以为均相催化臭氧化法去除水中微量污染物的广义预测提供一种有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验