Suppr超能文献

GCH1基因变异、四氢生物蝶呤及其对疼痛敏感性的影响。

GCH1 variants, tetrahydrobiopterin and their effects on pain sensitivity.

作者信息

Nasser Arafat, Møller Lisbeth Birk

机构信息

Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark.

出版信息

Scand J Pain. 2014 Apr 1;5(2):121-128. doi: 10.1016/j.sjpain.2013.12.001.

Abstract

Background A great proportion of the variation in pain experience and chronicity is caused by heritable factors. Within the last decades several candidate genes have been discovered either increasing or decreasing pain sensitivity or the risk of chronic pain in humans. One of the most studied genes is the GCH1 gene coding for the enzyme GTP cyclohydrolase 1 (GCH1). GCH1 catalyses the initial and rate-limiting step in the biosynthesis of tetrahydrobiopterin (BH4). The main function of BH4 is regulation of monoamine and nitric oxide biosynthesis, all involved in nociceptive signalling. Methods In this topical review we focus on the implication of the GCH1 gene and BH4 in painful conditions. We discuss experimental evidence from our group in relation to relevant research publications evaluating the BH4 pathway in pain. Studies assessing the role of GCH1 and BH4 in pain consist of human and animal studies, including DOPA-responsive dystonia (DRD) patients and hph-1 mice (a genetic mouse model of DRD) having mutations in the GCH1 gene as well as preclinical studies with the GCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP). The hypothesis is that genetic and pharmacological reduction of GCH1 would result in lower pain sensitivity. Results Previous studies have demonstrated that a particular "pain protective" GCH1 haplotype, found in 15% of the general human population, is linked to decreased pain sensitivity. We further support these findings in DRD patients, showing normal thresholds to mechanical and thermal stimuli, whereas a trend towards lower pain sensitivity is seen following chemical pain sensitisation. Consistent with these observations, non-injured hph-1 mice displayed normal mechano- and thermosensation compared to wild-type mice. After peripheral inflammation with Complete Freund' Adjuvant or sensitisation with capsaicin the mutant mice exhibited lower sensitivity to mechanical and heat stimuli. Moreover, hph-1 mice showed decreased nociception in the first phase of the formalin test. Several studies report analgesic effects of GCH1 inhibition with 90-270 mg/kg DAHP in rat models of inflammatory and neuropathic pain. However, we could not completely replicate these findings in mice. Fairly higher doses of DAHP (≥270 mg/kg) were needed to reduce inflammatory pain in mice, but the window between antinociception and toxic effects was small, since 400 mg/kg DAHP affected motor performance and general appearance. Also, the analgesic effects were marginal in mice compared to that observed in rats. Conclusions Variations in the GCH1 gene in both humans and mice appear to regulate pain sensitivity and pain behaviours, particularly after pain sensitisation, whereas pain sensitivity to phasic mechanical and thermal stimuli is normal. Moreover, pharmacological inhibition of GCH1 shows antinociceptive effects in preclinical pain studies, though our studies imply that GCH1 inhibition may have a small therapeutic index. Implications The implication of the GCH1 gene in pain may increase our understanding of the risk factors of chronic pain development and improve current pain therapy by personalised medicine. In addition, inhibition of GCH1 provides a potential target for analgesic drug development, though GCH1 inhibitors should possess local or partial effects to avoid serious side-effects to the central nervous system and cardiovascular system.

摘要

背景

疼痛体验和慢性化的很大一部分差异是由遗传因素引起的。在过去几十年中,已经发现了几个候选基因,它们要么增加要么降低人类的疼痛敏感性或慢性疼痛风险。研究最多的基因之一是编码GTP环化水解酶1(GCH1)的GCH1基因。GCH1催化四氢生物蝶呤(BH4)生物合成的初始和限速步骤。BH4的主要功能是调节单胺和一氧化氮的生物合成,所有这些都参与伤害性信号传导。

方法

在本专题综述中,我们重点关注GCH1基因和BH4在疼痛状况中的意义。我们讨论了我们小组的实验证据,并结合评估疼痛中BH4途径的相关研究出版物。评估GCH1和BH4在疼痛中作用的研究包括人类和动物研究,其中包括患有GCH1基因突变的多巴反应性肌张力障碍(DRD)患者和hph-1小鼠(DRD的遗传小鼠模型),以及使用GCH1抑制剂2,4-二氨基-6-羟基嘧啶(DAHP)的临床前研究。假设是GCH1的遗传和药理学降低将导致较低的疼痛敏感性。

结果

先前的研究表明,在15%的普通人群中发现的一种特定的“疼痛保护”GCH1单倍型与疼痛敏感性降低有关。我们在DRD患者中进一步支持了这些发现,显示对机械和热刺激的阈值正常,而在化学性疼痛敏化后观察到疼痛敏感性有降低的趋势。与这些观察结果一致,与野生型小鼠相比,未受伤的hph-1小鼠表现出正常的机械和热感觉。在用完全弗氏佐剂进行外周炎症或用辣椒素致敏后,突变小鼠对机械和热刺激的敏感性较低。此外,hph-1小鼠在福尔马林试验的第一阶段显示伤害感受降低。几项研究报告了在炎症性和神经性疼痛大鼠模型中,90 - 270 mg/kg DAHP抑制GCH1的镇痛作用。然而,我们在小鼠中无法完全重复这些发现。需要相当高剂量的DAHP(≥270 mg/kg)来减轻小鼠的炎症性疼痛,但抗伤害感受和毒性作用之间的窗口很小,因为400 mg/kg DAHP会影响运动性能和一般外观。此外,与在大鼠中观察到的相比,小鼠中的镇痛作用很微弱。

结论

人类和小鼠中GCH1基因的变异似乎调节疼痛敏感性和疼痛行为,特别是在疼痛敏化后,而对阶段性机械和热刺激的疼痛敏感性是正常的。此外,在临床前疼痛研究中,GCH1的药理学抑制显示出抗伤害感受作用,尽管我们的研究表明GCH1抑制可能具有较小的治疗指数。

意义

GCH1基因在疼痛中的意义可能会增加我们对慢性疼痛发展风险因素的理解,并通过个性化医学改善当前的疼痛治疗。此外,GCH1的抑制为镇痛药开发提供了一个潜在靶点,尽管GCH1抑制剂应具有局部或部分作用,以避免对中枢神经系统和心血管系统产生严重副作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验