Suppr超能文献

利用纳米粒子与血液的相互作用提高胰腺癌临床分期的准确性:一项初步研究。

Improving the accuracy of pancreatic cancer clinical staging by exploitation of nanoparticle-blood interactions: A pilot study.

机构信息

Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy.

Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy.

出版信息

Pancreatology. 2018 Sep;18(6):661-665. doi: 10.1016/j.pan.2018.06.002. Epub 2018 Jun 12.

Abstract

BACKGROUND

Pancreatic ductal adenocarcinoma (PDAC) early diagnosis is  crucial  and new, cheap and user-friendly techniques for biomarker identification  are  needed. "Protein corona" (PC) is emerging a new bio-interface potentially useful in tumor early diagnosis. In a previous investigation, we showed that relevant differences between the  protein patterns of  PCs formed on lipid NPs after exposure to PDAC and non-cancer plasma  samples exist. To extend that research, We performed this pilot study to investigate the effect of PDAC tumor size and distant metastases on PC composition.

METHODS

Twenty PDACs were clinically staged according to the UICC TNM staging system 8 t h Edition. Collected plasma samples were let to interact with lipid NPs; resulting PCs were characterized by SDS-PAGE. To properly evaluate changes in the PC, the protein intensity profiles were reduced to four regions of molecular weight: < 25 kDa, 25-50 kDa, 50-120 kDa, > 120 kDa.  RESULTS: Data analysis allowed to distinguish T1-T2 cases from T3 and above all from metastatic ones (p < 0.05). Discrimination power was particularly due to a subset of plasma proteins with molecular  weight comprised between 25-50 kDa  and 50-120 kDa.

CONCLUSIONS

PC composition is critically influenced by tumor size and presence of distant metastases in PDAC. If our findings will be further confirmed, we envision that future developments of cheap and user-friendly PC-based tools will allow to improve the accuracy of PDAC clinical staging, identifying among resectable  PDACs with potentially better prognosis (i.e. T1 and T2) those at higher risk of occult distant metastases.

摘要

背景

胰腺导管腺癌 (PDAC) 的早期诊断至关重要,因此需要新的、廉价且易于使用的技术来鉴定生物标志物。“蛋白质冠”(PC) 是一种新的生物界面,在肿瘤的早期诊断中具有潜在的应用价值。在之前的研究中,我们发现 PDAC 血浆样本与非癌症血浆样本暴露后形成的脂质 NPs 上的 PC 蛋白质图谱存在明显差异。为了扩展该研究,我们进行了这项初步研究,以探讨 PDAC 肿瘤大小和远处转移对 PC 组成的影响。

方法

根据 UICC TNM 分期系统 8 版,对 20 例 PDAC 进行临床分期。收集的血浆样本与脂质 NPs 相互作用;形成的 PC 用 SDS-PAGE 进行表征。为了正确评估 PC 的变化,将蛋白质强度图谱简化为四个分子量区域:<25 kDa、25-50 kDa、50-120 kDa、>120 kDa。

结果

数据分析可区分 T1-T2 期与 T3 期以上,以及与转移期的病例(p<0.05)。区分能力主要归因于分子量在 25-50 kDa 和 50-120 kDa 之间的一组血浆蛋白。

结论

PC 组成受到 PDAC 肿瘤大小和远处转移的严重影响。如果我们的研究结果得到进一步证实,我们设想未来开发廉价且易于使用的基于 PC 的工具将提高 PDAC 临床分期的准确性,在可切除的 PDAC 中,识别出具有更好预后(即 T1 和 T2)的患者,这些患者具有更高的隐匿性远处转移风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验