Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA.
J Control Release. 2020 Jun 10;322:122-136. doi: 10.1016/j.jconrel.2020.03.008. Epub 2020 Mar 9.
When nanoparticles are introduced into biological systems, host proteins tend to associate on the particle surface to form a protein layer termed the "protein corona" (PC). Identifying the proteins that constitute the PC can yield useful information about nanoparticle processing, bio-distribution, toxicity and clearance. Similarly, characterizing and identifying proteins within the PC from patient samples provides opportunities to probe disease proteomes and identify molecules that influence the disease process. Thus, nanoparticles represent unique probing tools for discovery of molecular targets for diseases. Here, we report a first review on target identification using nanoparticles in biological samples based on analysing physico chemical interactions. We also summarize the evolution of the PC surrounding various nano-systems, comment on PC signature, address PC complexity in fluids, and outline challenges associated with analysing the PC. In addition, the influence on PC formation of various nanoparticle parameters is summarized; nanoparticle characteristics considered include size, charge, temperature, and surface modifications for both organic and inorganic nanomaterials. We also discuss the advantages of nanotechnology, over other more invasive and laborious methods, for identifying potential diagnostic and therapeutic targets.
当纳米颗粒被引入生物系统时,宿主蛋白往往会在颗粒表面结合,形成一层被称为“蛋白冠”(PC)的蛋白质层。鉴定构成 PC 的蛋白质可以提供有关纳米颗粒处理、生物分布、毒性和清除的有用信息。同样,从患者样本中鉴定和鉴定 PC 中的蛋白质,为探究疾病蛋白质组和鉴定影响疾病进程的分子提供了机会。因此,纳米颗粒代表了用于发现疾病分子靶标的独特探测工具。在这里,我们根据分析物理化学相互作用,报告了首次使用生物样品中的纳米颗粒进行目标鉴定的综述。我们还总结了围绕各种纳米系统的 PC 的演变,对 PC 特征进行了评论,解决了液体中 PC 复杂性的问题,并概述了分析 PC 相关的挑战。此外,还总结了各种纳米颗粒参数对 PC 形成的影响;考虑的纳米颗粒特性包括大小、电荷、温度以及有机和无机纳米材料的表面修饰。我们还讨论了纳米技术相对于其他更具侵入性和繁琐的方法在鉴定潜在诊断和治疗靶标方面的优势。