Suppr超能文献

一种用于分析2型糖尿病患者连续血糖监测的最小模型方法。

A Minimal Model Approach for Analyzing Continuous Glucose Monitoring in Type 2 Diabetes.

作者信息

Goel Pranay, Parkhi Durga, Barua Amlan, Shah Mita, Ghaskadbi Saroj

机构信息

Department of Biology, Indian Institute of Science Education and Research, Pune, India.

Indian Institute of Science Education and Research, Pune, India.

出版信息

Front Physiol. 2018 Jun 4;9:673. doi: 10.3389/fphys.2018.00673. eCollection 2018.

Abstract

Continuous glucose monitoring (CGM), a technique that records blood glucose at a regular intervals. While CGM is more commonly used in type 1 diabetes, it is increasingly becoming attractive for treating type 2 diabetic patients. The time series obtained from a CGM provides a rich picture of the glycemic state of the subjects and may help have tighter control on blood sugar by revealing patterns in their physiological responses to food. However, despite its importance, the biophysical understanding of CGM is far from complete. CGM data series is complex not only because it depends on the composition of the food but also varies with individual physiology. All of these make a full modeling of CGM data a difficult task. Here we propose a simple model to explain CGM data in type 2 diabetes. The model combines a relatively simple glucose-insulin dynamics with a two-compartment food model. Using CGM data of a healthy and a diabetic individual we show that this model can capture liquid meals well. The model also allows us to estimate the parameters in a relatively straightforward manner. This opens up the possibility of personalizing the CGM data. The model also predicts insulin time series from the model, and the rate of appearance of glucose due to food. Our methodology thus paves the way for novel analyses of CGM which have not been possible before.

摘要

连续血糖监测(CGM)是一种定期记录血糖的技术。虽然CGM在1型糖尿病中使用更为普遍,但它在治疗2型糖尿病患者方面也越来越具有吸引力。从CGM获得的时间序列提供了受试者血糖状态的丰富图景,并可能通过揭示他们对食物的生理反应模式来帮助更严格地控制血糖。然而,尽管其很重要,但对CGM的生物物理学理解还远未完成。CGM数据序列很复杂,不仅因为它取决于食物的成分,还因个体生理状况而异。所有这些使得对CGM数据进行完整建模成为一项艰巨任务。在此,我们提出一个简单模型来解释2型糖尿病中的CGM数据。该模型将相对简单的葡萄糖 - 胰岛素动力学与双室食物模型相结合。利用一名健康个体和一名糖尿病个体的CGM数据,我们表明该模型能够很好地捕捉流食情况。该模型还使我们能够以相对直接的方式估计参数。这为个性化CGM数据开辟了可能性。该模型还能从模型中预测胰岛素时间序列以及食物引起的葡萄糖出现速率。因此,我们的方法为以前无法进行的CGM新分析铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验