Atomistic Modelling and Simulation ICAMS, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Phys Chem Chem Phys. 2018 Jul 14;20(26):17751-17761. doi: 10.1039/c8cp02786b. Epub 2018 Jun 19.
Metal organic chemical vapor deposition (MOCVD) of group III nitrides on graphene heterostructures offers new opportunities for the development of flexible optoelectronic devices and for the stabilization of conceptually-new two-dimensional materials. However, the MOCVD of group III nitrides is regulated by an intricate interplay of gas-phase and surface reactions that are beyond the resolution of experimental techniques. We use density-functional ab initio molecular dynamics (AIMD) with van der Waals corrections to identify atomistic pathways and associated electronic mechanisms driving precursor/surface reactions during metal organic vapor phase epitaxy at elevated temperatures of aluminum nitride on graphene, considered here as model case study. The results presented provide plausible interpretations of atomistic and electronic processes responsible for delivery of Al, C adatoms, and C-Al, CH, AlNH admolecules on pristine graphene via precursor/surface reactions. In addition, the simulations reveal C adatom permeation across defect-free graphene, as well as exchange of C monomers with graphene carbon atoms, for which we obtain rates of ∼0.3 THz at typical experimental temperatures (1500 K), and extract activation energies E = 0.28 ± 0.13 eV and attempt frequencies A = 2.1 (×1.7) THz via Arrhenius linear regression. The results demonstrate that AIMD simulations enable understanding complex precursor/surface reaction mechanisms, and thus propose AIMD to become an indispensable routine prediction-tool toward more effective exploitation of chemical precursors and better control of MOCVD processes during synthesis of functional materials.
金属有机化学气相沉积(MOCVD)在石墨烯异质结构上生长 III 族氮化物,为开发柔性光电设备以及稳定新概念二维材料提供了新的机会。然而,III 族氮化物的 MOCVD 受到气相和表面反应的复杂相互作用的调控,这些相互作用超出了实验技术的分辨率。我们使用带有范德华修正的密度泛函从头算分子动力学(AIMD)来确定原子级途径和相关的电子机制,这些机制在高温下驱动氮化铝在石墨烯上的金属有机气相外延过程中的前体/表面反应,这里考虑作为模型案例研究。所呈现的结果提供了对原子和电子过程的合理解释,这些过程负责通过前体/表面反应将 Al、C adatoms 和 C-Al、CH、AlNH admolecules 递送到原始石墨烯上。此外,模拟揭示了 C adatoms 在无缺陷石墨烯中的渗透,以及 C 单体与石墨烯碳原子的交换,我们在典型的实验温度(1500 K)下获得了约 0.3 THz 的速率,并通过 Arrhenius 线性回归提取出 0.28 ± 0.13 eV 的激活能 E 和 2.1(×1.7)THz 的尝试频率 A。结果表明,AIMD 模拟能够理解复杂的前体/表面反应机制,因此提议将 AIMD 作为一种不可或缺的常规预测工具,以更有效地利用化学前体,并更好地控制功能材料合成过程中的 MOCVD 过程。