Suppr超能文献

一种连续时间多状态马尔可夫模型,用于描述接受鲁美替尼单抗联合曲妥珠单抗和紫杉醇治疗的转移性乳腺癌患者腹泻事件的发生和严重程度。

A continuous-time multistate Markov model to describe the occurrence and severity of diarrhea events in metastatic breast cancer patients treated with lumretuzumab in combination with pertuzumab and paclitaxel.

机构信息

Clinical Pharmacology, Pharmaceutical Sciences, Roche Innovation Center New York, New York, USA.

Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, USA.

出版信息

Cancer Chemother Pharmacol. 2018 Sep;82(3):395-406. doi: 10.1007/s00280-018-3621-9. Epub 2018 Jun 18.

Abstract

PURPOSE

To inform lumretuzumab and pertuzumab dose modifications in order to decrease the incidence, severity, and duration of the diarrhea events in metastatic breast cancer patients treated with a combination therapy of lumretuzumab (anti-HER3) in combination with pertuzumab (anti-HER2) and paclitaxel using quantitative clinical pharmacology modeling approaches.

METHODS

The safety and pharmacokinetic (PK) data from three clinical trials (lumretuzumab monotherapy n = 47, pertuzumab monotherapy n = 78, and the combination therapy of lumretuzumab, pertuzumab and paclitaxel n = 35) were pooled together to develop a continuous-time discrete states Markov model describing the dynamics of the diarrhea events.

RESULTS

The model was able to capture the time course of different severities of diarrhea reasonably well. The effect of lumretuzumab and pertuzumab was well described by an E function indicating an increased rate of transition from moderate to mild or more severe diarrhea with higher doses. The concentration needed to trigger or worsen diarrhea episodes was estimated to be 120-fold lower in combination therapy compared to monotherapy, suggesting strong synergy between the two monoclonal antibodies. The prophylactic effect of loperamide in a subset of patients was also well captured by the model with a clear tendency to reduce the occurrence of diarrhea events.

CONCLUSIONS

This work shows that PK-toxicity modeling provides insight into how the severity of key adverse events evolves over time and highlights the potential use to support decision making in drug development.

摘要

目的

为了降低转移性乳腺癌患者在接受 lumretuzumab(抗 HER3)联合 pertuzumab(抗 HER2)和紫杉醇联合治疗时腹泻事件的发生率、严重程度和持续时间,我们对 lumretuzumab 和 pertuzumab 的剂量进行了调整。我们采用定量临床药理学建模方法来实现这一目标。

方法

对三项临床试验(lumretuzumab 单药治疗 n=47,pertuzumab 单药治疗 n=78,lumretuzumab、pertuzumab 和紫杉醇联合治疗 n=35)的安全性和药代动力学(PK)数据进行了汇总,以开发一种连续时间离散状态马尔可夫模型,用于描述腹泻事件的动态变化。

结果

该模型能够很好地捕捉不同严重程度腹泻的时间过程。lumretuzumab 和 pertuzumab 的作用通过 E 函数很好地描述,表明随着剂量的增加,从中度到轻度或更严重腹泻的转变速度加快。与单药治疗相比,联合治疗中引发或加重腹泻发作所需的浓度估计低了 120 倍,表明两种单克隆抗体之间存在很强的协同作用。模型还很好地捕捉了洛哌丁胺在部分患者中的预防作用,表明其具有降低腹泻事件发生的明显趋势。

结论

这项工作表明,PK-毒性建模可以深入了解关键不良事件的严重程度随时间的演变,并强调了在药物开发中支持决策的潜在用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验