Suppr超能文献

环状模型减少微钙化检测中的假阳性作为少量特征集,辅助乳腺癌早期诊断。

False Positive Reduction by an Annular Model as a Set of Few Features for Microcalcification Detection to Assist Early Diagnosis of Breast Cancer.

机构信息

Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Santa María Tonantzintla, 72840, Puebla, Pue, Mexico.

Universidad de las Américas-Puebla, San Andrés, Cholula, Puebla, Mexico.

出版信息

J Med Syst. 2018 Jun 18;42(8):134. doi: 10.1007/s10916-018-0989-3.

Abstract

Early automatic breast cancer detection from mammograms is based on the extraction of lesions, known as microcalcifications (MCs). This paper proposes a new and simple system for microcalcification detection to assist in early breast cancer detection. This work uses the two most recognized public mammogram databases, MIAS and DDSM. We are introducing a MC detection method based on (1) Beucher gradient for detection of regions of interest (ROIs), (2) an annulus model for extraction of few and effective features from candidates to MCs, and (3) one classification stage with two different classifiers, k Nearest Neighbor (KNN) and Support Vector Machine (SVM). For dense mammograms in the MIAS database, the performance metrics achieved are sensitivity of 0.9835, false alarm rate of 0.0083, accuracy of 0.9835, and area under the ROC curve of 0.9980 with a KNN classifier. The proposed MC detection method, based on a KNN classifier, achieves, a sensitivity, false positive rate, accuracy and area under the ROC curve of 0.9813, 0.0224, 0.9795 and 0.9974 for the MIAS database; and 0.9035, 0.0439, 0.9298 and 0.9759 for the DDSM database. By slightly reducing the true positive rate the method achieves three instances with false positive rate of 0: 2 on fatty mammograms with KNN and SVM, and one on dense with SVM. The proposed method gives better results than those from state of the art literature, when the mammograms are classified in fatty, fatty-glandular, and dense.

摘要

早期的乳腺癌自动检测基于从乳房 X 光片中提取病变,这些病变被称为微钙化(MCs)。本文提出了一种新的简单的微钙化检测系统,以辅助早期乳腺癌的检测。这项工作使用了两个最著名的公共乳房 X 光数据库,MIAS 和 DDSM。我们提出了一种基于(1)Beucher 梯度检测感兴趣区域(ROIs),(2)环状模型从候选微钙化中提取少量有效特征,以及(3)使用两个不同的分类器,k 近邻(KNN)和支持向量机(SVM)进行一个分类阶段的微钙化检测方法。在 MIAS 数据库中的致密乳房 X 光片中,使用 KNN 分类器获得的性能指标为灵敏度为 0.9835、假阳性率为 0.0083、准确率为 0.9835 和 ROC 曲线下面积为 0.9980。基于 KNN 分类器的提出的 MC 检测方法,在 MIAS 数据库中获得的灵敏度、假阳性率、准确率和 ROC 曲线下面积分别为 0.9813、0.0224、0.9795 和 0.9974;在 DDSM 数据库中分别为 0.9035、0.0439、0.9298 和 0.9759。通过稍微降低真阳性率,该方法在 KNN 和 SVM 上获得了 3 个假阳性率为 0 的实例:2 个在脂肪乳房 X 光片上,1 个在致密乳房 X 光片上。当将乳房 X 光片分类为脂肪、脂肪腺和致密时,所提出的方法比最先进的文献中的方法取得了更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验