Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
J Headache Pain. 2018 Jun 18;19(1):44. doi: 10.1186/s10194-018-0870-2.
Studies involving human pharmacological migraine models have predominantly focused on the vasoactive effects of headache-inducing drugs, including sildenafil and calcitonin gene-related peptide (CGRP). However, the role of possible glutamate level changes in the brainstem and thalamus is of emerging interest in the field of migraine research bringing forth the need for a novel, validated method to study the biochemical effects in these areas.
We applied an optimized in vivo human pharmacological proton (H) magnetic resonance spectroscopy (MRS) protocol (PRESS, repetition time 3000 ms, echo time 37.6-38.3 ms) at 3.0 T in combination with sildenafil and CGRP in a double-blind, placebo-controlled, randomized, double-dummy, three-way cross-over design. Seventeen healthy participants were scanned with the H-MRS protocol at baseline and twice (at 40 min and 140 min) after drug administration to investigate the sildenafil- and CGRP-induced glutamate changes in both brainstem and thalamus.
The glutamate levels increased transiently in the brainstem at 40-70 min after sildenafil administration compared to placebo (5.6%, P = 0.039). We found no sildenafil-induced glutamate changes in the thalamus, and no CGRP-induced glutamate changes in the brainstem or thalamus compared to placebo. Both sildenafil and CGRP induced headache in 53%-62% of participants. We found no interaction in the glutamate levels in the brainstem or thalamus between participants who developed sildenafil and/or CGRP-induced headache as compared to participants who did not.
The transient sildenafil-induced glutamate change in the brainstem possibly reflects increased excitability of the brainstem neurons. CGRP did not induce brainstem or thalamic glutamate changes, suggesting that it rather exerts its headache-inducing effects on the peripheral trigeminal pain pathways.
涉及人类药理学偏头痛模型的研究主要集中在引起头痛的药物的血管活性作用,包括西地那非和降钙素基因相关肽(CGRP)。然而,在偏头痛研究领域,大脑脑干和丘脑内谷氨酸水平变化的作用引起了人们的兴趣,这就需要一种新的、经过验证的方法来研究这些区域的生化作用。
我们应用了一种优化的体内人类药理学质子(H)磁共振波谱(MRS)方案(PRESS,重复时间 3000ms,回波时间 37.6-38.3ms),在 3.0T 下,结合西地那非和 CGRP 进行双盲、安慰剂对照、随机、三向交叉设计。17 名健康参与者在基线和药物给药后 40 分钟和 140 分钟进行 H-MRS 方案扫描,以研究西地那非和 CGRP 诱导的脑干和丘脑内谷氨酸变化。
与安慰剂相比,西地那非给药后 40-70 分钟内脑干内谷氨酸水平短暂升高(5.6%,P=0.039)。我们没有发现西地那非在丘脑内引起谷氨酸变化,也没有发现 CGRP 在脑干或丘脑内引起谷氨酸变化与安慰剂相比。西地那非和 CGRP 引起 53%-62%的参与者头痛。我们没有发现与安慰剂相比,在出现西地那非和/或 CGRP 诱导性头痛的参与者与未出现头痛的参与者之间,脑干或丘脑内谷氨酸水平存在相互作用。
脑干内短暂的西地那非诱导性谷氨酸变化可能反映了脑干神经元兴奋性的增加。CGRP 没有引起脑干或丘脑内谷氨酸变化,这表明它主要通过外周三叉神经疼痛通路发挥其致头痛作用。