Suppr超能文献

原发性肝癌手术后院内死亡率预测的人工神经网络和逻辑回归模型比较。

Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery.

机构信息

Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

PLoS One. 2012;7(4):e35781. doi: 10.1371/journal.pone.0035781. Epub 2012 Apr 26.

Abstract

BACKGROUND

Since most published articles comparing the performance of artificial neural network (ANN) models and logistic regression (LR) models for predicting hepatocellular carcinoma (HCC) outcomes used only a single dataset, the essential issue of internal validity (reproducibility) of the models has not been addressed. The study purposes to validate the use of ANN model for predicting in-hospital mortality in HCC surgery patients in Taiwan and to compare the predictive accuracy of ANN with that of LR model.

METHODOLOGY/PRINCIPAL FINDINGS: Patients who underwent a HCC surgery during the period from 1998 to 2009 were included in the study. This study retrospectively compared 1,000 pairs of LR and ANN models based on initial clinical data for 22,926 HCC surgery patients. For each pair of ANN and LR models, the area under the receiver operating characteristic (AUROC) curves, Hosmer-Lemeshow (H-L) statistics and accuracy rate were calculated and compared using paired T-tests. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and the relative importance of variables. Compared to the LR models, the ANN models had a better accuracy rate in 97.28% of cases, a better H-L statistic in 41.18% of cases, and a better AUROC curve in 84.67% of cases. Surgeon volume was the most influential (sensitive) parameter affecting in-hospital mortality followed by age and lengths of stay.

CONCLUSIONS/SIGNIFICANCE: In comparison with the conventional LR model, the ANN model in the study was more accurate in predicting in-hospital mortality and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.

摘要

背景

由于大多数比较人工神经网络 (ANN) 模型和逻辑回归 (LR) 模型预测肝细胞癌 (HCC) 结局性能的已发表文章仅使用单个数据集,因此模型的内部有效性(可重复性)这一基本问题尚未得到解决。本研究旨在验证在台湾使用 ANN 模型预测 HCC 手术患者住院死亡率的有效性,并比较 ANN 与 LR 模型的预测准确性。

方法/主要发现:本研究纳入了 1998 年至 2009 年期间接受 HCC 手术的患者。本研究回顾性比较了基于 22926 例 HCC 手术患者初始临床数据的 1000 对 LR 和 ANN 模型。对于每对 ANN 和 LR 模型,使用配对 T 检验计算并比较了受试者工作特征曲线下面积 (AUROC)、Hosmer-Lemeshow (H-L) 统计量和准确率。还进行了全局敏感性分析,以评估系统模型中输入参数的相对重要性和变量的相对重要性。与 LR 模型相比,ANN 模型在 97.28%的情况下具有更好的准确率,在 41.18%的情况下具有更好的 H-L 统计量,在 84.67%的情况下具有更好的 AUROC 曲线。手术医生的手术量是影响住院死亡率的最具影响力(敏感)参数,其次是年龄和住院时间。

结论/意义:与传统的 LR 模型相比,本研究中的 ANN 模型在预测住院死亡率方面更准确,且整体性能指标更高。进一步研究该模型可以考虑更详细的数据库的影响,该数据库包括并发症和临床检查结果以及更详细的结局数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c85a/3338531/9d945bb5924c/pone.0035781.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验