Unidad Monterrey , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Parque PIIT , Apodaca , Nuevo León , 66628 , México.
Departamento de Neurociencia Cognitiva y Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Circuito de la Investigación Científica s/n Ciudad Universitaria , Universidad Nacional Autónoma de México , Ciudad de México 04510 , México.
Anal Chem. 2018 Jul 17;90(14):8331-8336. doi: 10.1021/acs.analchem.8b02442. Epub 2018 Jul 5.
Intracellular signaling pathways are affected by the temporal nature of external chemical signaling molecules such as neurotransmitters or hormones. Developing high-throughput technologies to mimic these time-varying chemical signals and to analyze the response of single cells would deepen our understanding of signaling networks. In this work, we introduce a microfluidic platform to stimulate hundreds of single cells with chemical waveforms of tunable frequency and amplitude. Our device produces a linear gradient of 9 concentrations that are delivered to an equal number of chambers, each containing 492 microwells, where individual cells are captured. The device can alternate between the different stimuli concentrations and a control buffer, with a maximum operating frequency of 33 mHz that can be adjusted from a computer. Fluorescent time-lapse microscopy enables to obtain hundreds of thousands of data points from one experiment. We characterized the gradient performance and stability by staining hundreds of cells with calcein AM. We also assessed the capacity of our device to introduce periodic chemical stimuli of different amplitudes and frequencies. To demonstrate our device performance, we studied the dynamics of intracellular Ca release from intracellular stores of HEK cells when stimulated with carbachol at 4.5 and 20 mHz. Our work opens the possibility of characterizing the dynamic responses in real time of signaling molecules to time-varying chemical stimuli with single cell resolution.
细胞内信号通路受外部化学信号分子(如神经递质或激素)的时间特性影响。开发高通量技术来模拟这些时变化学信号,并分析单细胞的反应,将加深我们对信号网络的理解。在这项工作中,我们引入了一种微流控平台,用可调节频率和幅度的化学波形刺激数百个单细胞。我们的设备产生了 9 种浓度的线性梯度,这些浓度被输送到数量相等的腔室中,每个腔室包含 492 个微井,其中包含单个细胞。该设备可以在不同的刺激浓度和对照缓冲液之间交替,其最大工作频率为 33 mHz,可以通过计算机进行调整。荧光延时显微镜能够从一次实验中获得数十万的数据点。我们通过用 calcein AM 染色数百个细胞来表征梯度性能和稳定性。我们还评估了我们的设备引入不同幅度和频率周期性化学刺激的能力。为了展示我们的设备性能,我们研究了当用 carbachol 以 4.5 和 20 mHz 刺激时,HEK 细胞细胞内储存库中细胞内 Ca 释放的动力学。我们的工作为实时研究信号分子对时变化学刺激的动态响应提供了可能性,具有单细胞分辨率。