Collaborative Innovation Center of Renewable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials , Guangxi University , Nanning 530004 , P. R. China.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23131-23139. doi: 10.1021/acsami.8b06106. Epub 2018 Jun 27.
The oxygen evolution reaction (OER) is an essential process for renewable energy, and designing a bifunctional oxygen electrocatalyst with high catalytic performance plays a significant role. In this work, FeS, NiS, FeNiS, and N, O, S-doped meshy carbon base were successfully synthesized. The sample containing FeNiS exhibited excellent OER performance. The density functional theory calculations indicate that the partial density of states for 3d electrons (3d-PDOS) of Fe and Ni atoms are changed from monometallic sulfide to bimetallic sulfide at the sulfur vacancy. The asymmetric 3d electronic structure optimizes the 3d-PDOS of Fe and Ni atoms, and leads to an enhanced OER activity. This work provides a new strategy to prepare a low-cost electrocatalyst for oxygen evolution with high-efficiency.
氧析出反应(OER)是可再生能源的一个重要过程,设计具有高催化性能的双功能氧电催化剂具有重要意义。在这项工作中,成功合成了 FeS、NiS、FeNiS 和 N、O、S 掺杂的网状碳基底。含有 FeNiS 的样品表现出优异的 OER 性能。密度泛函理论计算表明,在硫空位处,Fe 和 Ni 原子的部分态密度(3d-PDOS)从单金属硫化物变为双金属硫化物。不对称的 3d 电子结构优化了 Fe 和 Ni 原子的 3d-PDOS,从而提高了 OER 活性。这项工作为制备高效低成本的氧气析出电催化剂提供了一种新策略。