文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Biosynthesis of ternary NiCoFeO nanoflowers: investigating their 3D structure and potential use in gene delivery.

作者信息

Alijani Hajar Q, Khatami Mehrdad, Torkzadeh-Mahani Masoud, Michalička Jan, Wang Wu, Wang Di, Heydari Abolfazl

机构信息

Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares, University, Tehran, Iran.

出版信息

J Biol Eng. 2023 Oct 2;17(1):61. doi: 10.1186/s13036-023-00381-5.


DOI:10.1186/s13036-023-00381-5
PMID:37784189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10546742/
Abstract

Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFeO) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/1493053d31c5/13036_2023_381_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/533671867dae/13036_2023_381_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/1f673e59689b/13036_2023_381_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/28bbc7eed3bc/13036_2023_381_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/b7ef67a51d64/13036_2023_381_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/9f467f1c7175/13036_2023_381_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/fa2b928349db/13036_2023_381_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/b6788b2a3f94/13036_2023_381_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/918425cfed86/13036_2023_381_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/1493053d31c5/13036_2023_381_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/533671867dae/13036_2023_381_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/1f673e59689b/13036_2023_381_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/28bbc7eed3bc/13036_2023_381_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/b7ef67a51d64/13036_2023_381_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/9f467f1c7175/13036_2023_381_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/fa2b928349db/13036_2023_381_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/b6788b2a3f94/13036_2023_381_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/918425cfed86/13036_2023_381_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6992/10546742/1493053d31c5/13036_2023_381_Fig9_HTML.jpg

相似文献

[1]
Biosynthesis of ternary NiCoFeO nanoflowers: investigating their 3D structure and potential use in gene delivery.

J Biol Eng. 2023-10-2

[2]
Porous α-FeO nanocarriers: Biosynthesis and gene delivery applications.

Heliyon. 2024-4-2

[3]
Mesoporous halloysite nanotubes modified by CuFeO spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives.

Sci Rep. 2019-4-3

[4]
Sonochemical synthesis of Gd doped CoFeO spinel ferrite nanoparticles and its physical properties.

Ultrason Sonochem. 2018-1

[5]
Synthesis and Properties of Nanosized Stoichiometric Cobalt Ferrite Spinel.

Materials (Basel). 2018-7-19

[6]
Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach.

Dalton Trans. 2011-9-8

[7]
Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated aqueous extract.

Int J Nanomedicine. 2018-12-12

[8]
Effect of praseodymium in cation distribution, and temperature-dependent magnetic response of cobalt spinel ferrite nanoparticles.

Nanotechnology. 2022-4-20

[9]
Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties.

Materials (Basel). 2017-4-26

[10]
Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles.

Nanoscale. 2018-8-9

引用本文的文献

[1]
Synthesis with control of DNA nanoflowers towards biomedical applications.

Mater Today Bio. 2025-5-21

[2]
Porous α-FeO nanocarriers: Biosynthesis and gene delivery applications.

Heliyon. 2024-4-2

本文引用的文献

[1]
Preparation of ZnGaO nanoflowers and their full-color luminescence properties.

Sci Rep. 2023-9-2

[2]
Modeling of adsorptive removal of azithromycin from aquatic media by CoFeONiO anchored microalgae-derived nitrogen-doped porous activated carbon adsorbent and colorimetric quantifying of azithromycin in pharmaceutical products.

Chemosphere. 2023-7

[3]
A Novel C Doped MoS /CoP/MoO Ternary Heterostructure Nanoflower for Hydrogen Evolution Reaction at Wide pH Range and Efficient Overall Water Splitting in Alkaline Media.

Chemistry. 2023-6-22

[4]
Preparation and Characterization of NiCoFe2O4 Nanoparticles as an Effective Catalyst for the Synthesis of Trisubstituted Imidazole Derivatives Under Solvent-free Conditions.

Acta Chim Slov. 2022-12-15

[5]
HPTLC and ATR/FTIR Characterization of Antioxidants in Different Rosemary Extracts.

Molecules. 2021-10-7

[6]
Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors.

Dalton Trans. 2021-6-22

[7]
Fabrication of Highly Porous Polymeric Nanocomposite for the Removal of Radioactive U(VI) and Eu(III) Ions from Aqueous Solution.

Polymers (Basel). 2020-12-9

[8]
CRISPR/Cas9 cleavage triggered ESDR for circulating tumor DNA detection based on a 3D graphene/AuPtPd nanoflower biosensor.

Biosens Bioelectron. 2021-2-1

[9]
Facile synthesis of nanoflower-like phosphorus-doped NiS/CoFeO arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction.

J Colloid Interface Sci. 2021-1-1

[10]
3D ternary NiCoP/C nanoflower/nanourchin arrays grown on HCNs: a highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction.

Nanoscale. 2020-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索