Suppr超能文献

通过原位原子力显微镜揭示嵌段共聚物纳米粒子-晶体相互作用的机制见解。

Mechanistic Insights into Diblock Copolymer Nanoparticle-Crystal Interactions Revealed via in Situ Atomic Force Microscopy.

机构信息

Department of Materials Science and Engineering , Cornell University , Ithaca , New York 14853 , United States.

The School of Materials , University of Manchester , Oxford Road , Manchester M13 9PL , U.K.

出版信息

J Am Chem Soc. 2018 Jun 27;140(25):7936-7945. doi: 10.1021/jacs.8b03828. Epub 2018 Jun 19.

Abstract

Recently, it has become clear that a range of nanoparticles can be occluded within single crystals to form nanocomposites. Calcite is a much-studied model, but even in this case we have yet to fully understand the details of the nanoscale interactions at the organic-inorganic interface that lead to occlusion. Here, a series of diblock copolymer nanoparticles with well-defined surface chemistries were visualized interacting with a growing calcite surface using in situ atomic force microscopy. These nanoparticles comprise a poly(benzyl methacrylate) (PBzMA) core-forming block and a non-ionic poly(glycerol monomethacrylate) (Ph-PGMA), a carboxylic acid-tipped poly(glycerol monomethacrylate) (HOOC-PGMA), or an anionic poly(methacrylic acid) (PMAA) stabilizer block. Our results reveal three modes of interaction between the nanoparticles and the calcite surface: (i) attachment followed by detachment, (ii) sticking to and "hovering" over the surface, allowing steps to pass beneath the immobilized nanoparticle, and (iii) incorporation of the nanoparticle by the growing crystals. By analyzing the relative contributions of these three types of interactions as a function of nanoparticle surface chemistry, we show that ∼85% of PMAA-PBzMA nanoparticles either "hover" or become incorporated, compared to ∼50% of the HOOC-PGMA-PBzMA nanoparticles. To explain this difference, we propose a two-state binding mechanism for the anionic PMAA-PBzMA nanoparticles. The "hovering" nanoparticles possess highly extended polyelectrolytic stabilizer chains and such chains must adopt a more "collapsed" conformation prior to successful nanoparticle occlusion. This study provides a conceptual framework for understanding how sterically stabilized nanoparticles interact with growing crystals, and suggests design principles for improving occlusion efficiencies.

摘要

最近,人们已经清楚地认识到,一系列纳米颗粒可以被阻挡在单个晶体中形成纳米复合材料。方解石是一个研究得较多的模型,但即使在这种情况下,我们也尚未完全理解导致阻挡的有机-无机界面纳米尺度相互作用的细节。在这里,一系列具有明确表面化学性质的两嵌段共聚物纳米颗粒使用原位原子力显微镜可视化与生长的方解石表面相互作用。这些纳米颗粒由聚(苯甲基甲基丙烯酸酯)(PBzMA)核形成嵌段和非离子聚(甘油单甲基丙烯酸酯)(Ph-PGMA)、带羧酸的聚(甘油单甲基丙烯酸酯)(HOOC-PGMA)或阴离子聚(甲基丙烯酸)(PMAA)稳定剂嵌段组成。我们的结果揭示了纳米颗粒与方解石表面之间的三种相互作用模式:(i)附着后脱离,(ii)附着并“悬停”在表面上,允许台阶在固定的纳米颗粒下方通过,以及(iii)通过生长的晶体将纳米颗粒纳入。通过分析纳米颗粒表面化学作为函数的这三种相互作用的相对贡献,我们表明,与 HOOC-PGMA-PBzMA 纳米颗粒相比,约 85%的 PMAA-PBzMA 纳米颗粒要么“悬停”要么被纳入。为了解释这种差异,我们提出了一种阴离子 PMAA-PBzMA 纳米颗粒的两态结合机制。“悬停”的纳米颗粒具有高度扩展的聚电解质稳定剂链,并且这些链在成功的纳米颗粒阻挡之前必须采用更“塌陷”的构象。这项研究为理解如何稳定化的纳米颗粒与生长的晶体相互作用提供了一个概念框架,并提出了提高阻挡效率的设计原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验