Douverne Marcel, Ning Yin, Tatani Aikaterini, Meldrum Fiona C, Armes Steven P
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South, Yorkshire, S3 7HF, UK.
Faculty of Chemistry, Pharmaceutical Sciences and Geosciences, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8692-8697. doi: 10.1002/anie.201901307. Epub 2019 May 22.
Polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain transfer (RAFT) polymerization offers a platform technology for the efficient and versatile synthesis of well-defined sterically stabilized block copolymer nanoparticles. Herein we synthesize a series of such nanoparticles with tunable anionic charge density within the stabilizer chains, which are prepared via statistical copolymerization of anionic 2-(phosphonooxy)ethyl methacrylate (P) with non-ionic glycerol monomethacrylate (G). Systematic variation of the P/G molar ratio enables elucidation of the minimum number of phosphate groups per copolymer chain required to promote nanoparticle occlusion within a model inorganic crystal (calcite). Moreover, the extent of nanoparticle occlusion correlates strongly with the phosphate content of the steric stabilizer chains. This study is the first to examine the effect of systemically varying the anionic charge density of nanoparticles on their occlusion efficiency and sheds new light on maximizing the loading of guest nanoparticles within calcite host crystals.
由可逆加成-断裂链转移(RAFT)聚合介导的聚合诱导自组装(PISA)为高效、通用地合成定义明确的空间稳定嵌段共聚物纳米颗粒提供了一种平台技术。在此,我们合成了一系列在稳定剂链内具有可调阴离子电荷密度的此类纳米颗粒,这些纳米颗粒是通过阴离子甲基丙烯酸2-(膦酰氧基)乙酯(P)与非离子甲基丙烯酸甘油单酯(G)的统计共聚制备的。P/G摩尔比的系统变化能够阐明每条共聚物链促进纳米颗粒在模型无机晶体(方解石)内包封所需的最小磷酸基团数。此外,纳米颗粒的包封程度与空间稳定剂链的磷酸盐含量密切相关。本研究首次考察了系统改变纳米颗粒的阴离子电荷密度对其包封效率的影响,并为使客体纳米颗粒在方解石主体晶体中的负载最大化提供了新的思路。