Department FE 12 - Data Assimilation, Deutscher Wetterdienst, 63067, Offenbach am Main, Germany; Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK.
Krembil Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada; Department of Mathematics, University of Toronto, Toronto, Ontario, M5T 2S8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5T 2S8, Canada.
Neuroimage. 2018 Oct 1;179:414-428. doi: 10.1016/j.neuroimage.2018.06.043. Epub 2018 Jun 18.
The physiological mechanisms by which anaesthetic drugs modulate oscillatory brain activity remain poorly understood. Combining human data, mathematical and computational analysis of both spiking and mean-field models, we investigated the spectral dynamics of encephalographic (EEG) beta-alpha oscillations, observed in human patients undergoing general anaesthesia. The effect of anaesthetics can be modelled as a reduction of neural fluctuation intensity, and/or an increase in inhibitory synaptic gain in the thalamo-cortical circuit. Unlike previous work, which suggested the primary importance of gamma-amino-butryic-acid (GABA) augmentation in causing a shift to low EEG frequencies, our analysis demonstrates that a non-linear transition, triggered by a simple decrease in neural fluctuation intensity, is sufficient to explain the clinically-observed appearance - and subsequent slowing - of the beta-alpha narrowband EEG peak. In our model, increased synaptic inhibition alone, did not correlate with the clinically-observed encephalographic spectral changes, but did cause the anaesthetic-induced decrease in neuronal firing rate. Taken together, our results show that such a non-linear transition results in functional fragmentation of cortical and thalamic populations; highly correlated intra-population dynamics triggered by anaesthesia decouple and isolate neural populations. Our results are able to parsimoniously unify and replicate the observed anaesthetic effects on both the EEG spectra and inter-regional connectivity, and further highlight the importance of neural activity fluctuations in the genesis of altered brain states.
麻醉药物调节脑振荡活动的生理机制仍知之甚少。我们结合人类数据,对尖峰和平均场模型进行数学和计算分析,研究了在接受全身麻醉的人类患者中观察到的脑电图(EEG)β-α振荡的频谱动力学。麻醉剂的作用可以建模为神经波动强度的降低,以及/或丘脑-皮层回路中抑制性突触增益的增加。与之前的工作不同,该工作表明γ-氨基丁酸(GABA)的增加在引起向低频 EEG 转移方面起主要作用,我们的分析表明,由神经波动强度简单降低引发的非线性转变足以解释临床上观察到的β-α窄带 EEG 峰值的出现-以及随后的减慢。在我们的模型中,单独增加突触抑制与临床上观察到的脑电图频谱变化无关,但确实导致麻醉诱导的神经元放电率降低。总之,我们的结果表明,这种非线性转变导致皮质和丘脑群体的功能碎片化;麻醉引起的高度相关的群体内动力学解耦并隔离神经群体。我们的结果能够简洁地统一和复制观察到的麻醉对 EEG 频谱和区域间连接的影响,并进一步强调神经活动波动在改变脑状态的产生中的重要性。