Suppr超能文献

用于非酶法检测过氧化氢的基于杂化多金属氧酸盐的金属有机框架与科琴黑复合材料

Hybridized Polyoxometalate-Based Metal-Organic Framework with Ketjenblack for the Nonenzymatic Detection of H O.

作者信息

Wang Cong, Zhou Ming, Ma Yuanyuan, Tan Huaqiao, Wang Yonghui, Li Yangguang

机构信息

Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.

出版信息

Chem Asian J. 2018 Jun 19. doi: 10.1002/asia.201800758.

Abstract

The rational design and development of efficient and affordable enzyme-free electrocatalysts for electrochemical detection are of great significance for the large-scale applications of sensor materials, and have aroused increasing research interest. Herein, we report that a typical polyoxometalate (POM)-based metal-organic framework (NENU5) that was hybridized with ketjenblack (KB) was a highly efficient electrochemical catalyst that could be used for the highly sensitive nonenzymatic detection of H O . The composite catalyst exhibited superb electrochemical detection performance towards H O , including a broad linear range from 10-50 mm, a low detection limit of 1.03 μm, and a high sensitivity of 33.77 μA mm , as well as excellent selectivity and stability. These excellent electrocatalytic properties should be attributed to the unique redox activity of the POM, the high specific surface area of the metal-organic framework (MOF), the strong conductivity of KB, and the synergistic effects of the multiple components in the composites during the electrolysis of H O . This work provides a new pathway for the exploration of nonenzymatic electrochemical sensors.

摘要

设计和开发高效且经济实惠的用于电化学检测的无酶电催化剂,对于传感器材料的大规模应用具有重要意义,并引起了越来越多的研究兴趣。在此,我们报道一种典型的基于多金属氧酸盐(POM)的金属有机框架(NENU5)与科琴黑(KB)杂交后,是一种高效的电化学催化剂,可用于对H₂O₂进行高灵敏度的非酶检测。该复合催化剂对H₂O₂表现出卓越的电化学检测性能,包括10⁻⁵⁰ mM的宽线性范围、1.03 μM的低检测限、33.77 μA mM⁻¹的高灵敏度,以及出色的选择性和稳定性。这些优异的电催化性能应归因于POM独特的氧化还原活性、金属有机框架(MOF)的高比表面积、KB的强导电性以及复合材料中多种成分在H₂O₂电解过程中的协同效应。这项工作为探索非酶电化学传感器提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验