Suppr超能文献

利用近红外反射光谱法快速预测有机废物的甲烷潜力:用于农场规模沼气厂监测的成功工具。

Fast prediction of organic wastes methane potential by near infrared reflectance spectroscopy: A successful tool for farm-scale biogas plant monitoring.

机构信息

APESA Pôle Valorisation, Cap Ecologia, Lescar, France.

出版信息

Waste Manag Res. 2018 Sep;36(9):800-809. doi: 10.1177/0734242X18778773. Epub 2018 Jun 20.

Abstract

Currently, there is a growing worldwide interest for the treatment of wastes, and especially farm wastes, by anaerobic digestion. Biochemical methane potential is a key parameter for the design, optimisation and monitoring of the anaerobic digestion process, but it is also time consuming (4-7 weeks). Near infrared reflectance spectroscopy seems a promising method to predict the biochemical methane potential of a wide range of organic substrates. This study compares a 'global' predictive model mainly built with biogas plant feedstocks, and a more 'agricultural' specific one built with farm wastes only (e.g. manures and crop residues). The global model was calibrated with 245 samples and the specific one with 171 samples. In parallel, validation sets composed of 36 farm wastes and eight other wastes (sludge, fruit residues and vegetables) were used to evaluate and compare both models. Satisfying results were obtained on the validation sets considering, respectively for the global and the specific models, a root mean square error of prediction of 44 and 34 NL CH kg volatile solid, a coefficient of determination of 0.76 and 0.83, and a ratio of performance to deviation of 2.0 and 2.4. In general rules, the specific model was better than the global one in the prediction of farm wastes methane potential. However, thanks to its larger sample variability, the global one was more robust, especially towards the 'other' wastes, which can be introduced punctually in agricultural biogas plant.

摘要

目前,全球范围内对利用厌氧消化处理废物(尤其是农业废物)的兴趣日益浓厚。生物化学甲烷潜能是设计、优化和监测厌氧消化过程的关键参数,但它也很耗时(4-7 周)。近红外反射光谱似乎是一种很有前途的方法,可以预测广泛的有机基质的生物化学甲烷潜能。本研究比较了一个主要基于沼气厂原料构建的“全局”预测模型,和一个仅基于农业废物(如粪肥和农作物残余物)构建的更“农业”特定模型。全局模型用 245 个样本进行校准,特定模型用 171 个样本进行校准。同时,使用由 36 种农业废物和 8 种其他废物(污泥、水果残渣和蔬菜)组成的验证集来评估和比较这两种模型。在验证集上得到了令人满意的结果,考虑到全局和特定模型的预测误差分别为 44 和 34NLCHkg 挥发性固体,决定系数分别为 0.76 和 0.83,性能与偏差的比值分别为 2.0 和 2.4。一般来说,特定模型在预测农业废物甲烷潜能方面优于全局模型。然而,由于其样本变异性更大,全局模型更稳健,特别是对于“其他”废物,这些废物可以偶尔引入到农业沼气厂中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验