School of Geography and Planning, SunYat-Sen University, 135 # Xingangxi Road, Guangzhou 510275, China.
Sensors (Basel). 2018 Jun 19;18(6):1970. doi: 10.3390/s18061970.
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
基于智能手机嵌入式微机电系统 (MEMS) 传感器的行人航位推算 (PDR) 在室内外普及定位中起着关键作用。然而,作为一种相对定位方法,它存在误差累积的问题,这使其无法长期独立运行。航向估计误差是主要的位置误差源之一,因此,为了提高 PDR 方法在复杂环境中的位置跟踪性能,提出了一种基于鲁棒自适应卡尔曼滤波 (RAKF) 的准确航向估计方法。在我们的方法中,使用卡尔曼滤波 (KF) 的解融合来自陀螺仪、加速度计和磁力计传感器的输出,其中从加速度和磁场数据得出的航向测量值用于校正从角速率积分得到的状态。为了识别和控制测量异常值,使用基于最大似然估计器 (M-estimator) 的模型。此外,应用自适应因子来抵抗状态模型干扰的负面影响。在室内环境中进行了静态和动态条件下的广泛实验。实验结果表明,与基于传统 KF 的方法相比,所提出的方法提供了更准确的航向估计,并支持更稳健和动态自适应的位置跟踪。