文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用统一医学语言系统从在线健康社区的帖子中发现知识。

Knowledge Discovery from Posts in Online Health Communities Using Unified Medical Language System.

机构信息

Department of Information Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China.

Henley Business School, University of Reading, Reading RG6 6UD, UK.

出版信息

Int J Environ Res Public Health. 2018 Jun 19;15(6):1291. doi: 10.3390/ijerph15061291.


DOI:10.3390/ijerph15061291
PMID:29921824
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6025155/
Abstract

Patient-reported posts in Online Health Communities (OHCs) contain various valuable information that can help establish knowledge-based online support for online patients. However, utilizing these reports to improve online patient services in the absence of appropriate medical and healthcare expert knowledge is difficult. Thus, we propose a comprehensive knowledge discovery method that is based on the Unified Medical Language System for the analysis of narrative posts in OHCs. First, we propose a domain-knowledge support framework for OHCs to provide a basis for post analysis. Second, we develop a Knowledge-Involved Topic Modeling (KI-TM) method to extract and expand explicit knowledge within the text. We propose four metrics, namely, explicit knowledge rate, latent knowledge rate, knowledge correlation rate, and perplexity, for the evaluation of the KI-TM method. Our experimental results indicate that our proposed method outperforms existing methods in terms of providing knowledge support. Our method enhances knowledge support for online patients and can help develop intelligent OHCs in the future.

摘要

患者在在线健康社区(OHC)中发布的报告包含各种有价值的信息,可以帮助为在线患者提供基于知识的在线支持。然而,在缺乏适当的医学和医疗保健专业知识的情况下,利用这些报告来改善在线患者服务是很困难的。因此,我们提出了一种基于统一医学语言系统的综合知识发现方法,用于分析 OHC 中的叙述性帖子。首先,我们提出了一个 OHC 的领域知识支持框架,为帖子分析提供基础。其次,我们开发了一种知识参与的主题建模(KI-TM)方法,从文本中提取和扩展显式知识。我们提出了四个指标,即显式知识率、潜在知识率、知识相关率和困惑度,用于评估 KI-TM 方法。我们的实验结果表明,与现有方法相比,我们提出的方法在提供知识支持方面表现更好。我们的方法增强了对在线患者的知识支持,并有助于未来开发智能 OHC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/97847fa3df46/ijerph-15-01291-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/3f6c2d1d91de/ijerph-15-01291-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/66122ac641fa/ijerph-15-01291-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/2436317d2b49/ijerph-15-01291-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/26fa8a266c74/ijerph-15-01291-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/20738524537a/ijerph-15-01291-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/202f34ff6ced/ijerph-15-01291-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/ff6c4a367715/ijerph-15-01291-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/ca6a2d804d14/ijerph-15-01291-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/97847fa3df46/ijerph-15-01291-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/3f6c2d1d91de/ijerph-15-01291-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/66122ac641fa/ijerph-15-01291-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/2436317d2b49/ijerph-15-01291-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/26fa8a266c74/ijerph-15-01291-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/20738524537a/ijerph-15-01291-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/202f34ff6ced/ijerph-15-01291-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/ff6c4a367715/ijerph-15-01291-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/ca6a2d804d14/ijerph-15-01291-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b572/6025155/97847fa3df46/ijerph-15-01291-g009.jpg

相似文献

[1]
Knowledge Discovery from Posts in Online Health Communities Using Unified Medical Language System.

Int J Environ Res Public Health. 2018-6-19

[2]
Fulfilling information needs of patients in online health communities.

Health Info Libr J. 2019-5-14

[3]
Medical concept normalization in social media posts with recurrent neural networks.

J Biomed Inform. 2018-6-12

[4]
Knowledge Acquisition and Social Support in Online Health Communities: Analysis of an Online Ovarian Cancer Community.

JMIR Cancer. 2022-9-13

[5]
Network-based modeling and intelligent data mining of social media for improving care.

IEEE J Biomed Health Inform. 2015-1

[6]
Filtering big data from social media--Building an early warning system for adverse drug reactions.

J Biomed Inform. 2015-4

[7]
Assessment of Adaptive Engagement and Support Model for People With Chronic Health Conditions in Online Health Communities: Combined Content Analysis.

J Med Internet Res. 2020-7-7

[8]
Assessing Patient Perceptions and Experiences of Paracetamol in France: Infodemiology Study Using Social Media Data Mining.

J Med Internet Res. 2021-7-12

[9]
Using data-driven sublanguage pattern mining to induce knowledge models: application in medical image reports knowledge representation.

BMC Med Inform Decis Mak. 2018-7-6

[10]
PREDOSE: a semantic web platform for drug abuse epidemiology using social media.

J Biomed Inform. 2013-7-25

引用本文的文献

[1]
Named Entity Recognition of Diabetes Online Health Community Data Using Multiple Machine Learning Models.

Bioengineering (Basel). 2023-5-29

[2]
Exploring public attitudes toward live-streaming fitness in China: A sentiment and content analysis of China's social media Weibo.

Front Public Health. 2022

[3]
Application of natural language processing techniques to identify off-label drug usage from various online health communities.

J Am Med Inform Assoc. 2021-9-18

[4]
Coping With Stress and Burnout Associated With Telecommunication and Online Learning.

Front Public Health. 2020

[5]
UMLS users and uses: a current overview.

J Am Med Inform Assoc. 2020-7-19

[6]
The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model.

Int J Environ Res Public Health. 2020-5-22

[7]
Exploring the Effect of Market Conditions on Price Premiums in the Online Health Community.

Int J Environ Res Public Health. 2020-2-19

[8]
Online Learning Communities and Mental Health Literacy for Preschool Teachers: The Moderating Role of Enthusiasm for Engagement.

Int J Environ Res Public Health. 2019-11-13

本文引用的文献

[1]
Detecting clinically related content in online patient posts.

J Biomed Inform. 2017-10-3

[2]
Clinical trials from the patient perspective: survey in an online patient community.

BMC Health Serv Res. 2017-2-27

[3]
Advantages and limitations of online communities of patients for research on health products.

Therapie. 2017-2

[4]
Mining Health Social Media with Sentiment Analysis.

J Med Syst. 2016-11

[5]
'Keep complaining til someone listens': Exchanges of tacit healthcare knowledge in online illness communities.

Soc Sci Med. 2016-10

[6]
Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach.

J Biomed Inform. 2016-8

[7]
Knowledge Author: facilitating user-driven, domain content development to support clinical information extraction.

J Biomed Semantics. 2016-6-23

[8]
Online Health Communities and Chronic Disease Self-Management.

Health Commun. 2017-3

[9]
The Online Dissemination of Nature-Health Concepts: Lessons from Sentiment Analysis of Social Media Relating to "Nature-Deficit Disorder".

Int J Environ Res Public Health. 2016-1-19

[10]
Website Sharing in Online Health Communities: A Descriptive Analysis.

J Med Internet Res. 2016-1-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索