Suppr超能文献

以色列用于识别炎症性肠病患者的新型算法的开发与验证:一项Epi-IIRN小组研究

Development and validation of novel algorithms to identify patients with inflammatory bowel diseases in Israel: an epi-IIRN group study.

作者信息

Friedman Mira Y, Leventer-Roberts Maya, Rosenblum Joseph, Zigman Nir, Goren Iris, Mourad Vered, Lederman Natan, Cohen Nurit, Matz Eran, Dushnitzky Doron Z, Borovsky Nirit, Hoshen Moshe B, Focht Gili, Avitzour Malka, Shachar Yael, Chowers Yehuda, Eliakim Rami, Ben-Horin Shomron, Odes Shmuel, Schwartz Doron, Dotan Iris, Israeli Eran, Levi Zohar, Benchimol Eric I, Balicer Ran D, Turner Dan

机构信息

The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.

Braun School of Public and Community Medicine, The Hebrew University - Hadassah Medical Center, Jerusalem, Israel.

出版信息

Clin Epidemiol. 2018 Jun 7;10:671-681. doi: 10.2147/CLEP.S151339. eCollection 2018.

Abstract

BACKGROUND

Before embarking on administrative research, validated case ascertainment algorithms must be developed. We aimed at developing algorithms for identifying inflammatory bowel disease (IBD) patients, date of disease onset, and IBD type (Crohn's disease [CD] vs ulcerative colitis [UC]) in the databases of the four Israeli Health Maintenance Organizations (HMOs) covering 98% of the population.

METHODS

Algorithms were developed on 5,131 IBD patients and 2,072 controls, following independent chart review (60% CD and 39% UC). We reviewed 942 different combinations of clinical parameters aided by mathematical modeling. The algorithms were validated on an independent cohort of 160,000 random subjects.

RESULTS

The combination of the following variables achieved the highest diagnostic accuracy: IBD-related codes, alone if more than five to six codes or combined with purchases of IBD-related medications (at least three purchases or ≥3 months from the first to last purchase) (sensitivity 89%, specificity 99%, positive predictive value [PPV] 92%, negative predictive value [NPV] 99%). A look-back period of 2-5 years (depending on the HMO) without IBD-related codes or medications best determined the date of diagnosis (sensitivity 83%, specificity 68%, PPV 82%, NPV 70%). IBD type was determined by the majority of CD/UC codes of the three recent contacts or the most recent when less than three contacts were recorded (sensitivity 92%, specificity 97%, PPV 97%, NPV 92%). Applying these algorithms, a total of 38,291 IBD patients were residing in Israel, corresponding to a prevalence rate of 459/100,000 (0.46%).

CONCLUSION

The application of the validated algorithms to Israel's administrative databases will now create a large and accurate ongoing population-based cohort of IBD patients for future administrative studies.

摘要

背景

在开展管理性研究之前,必须开发经过验证的病例确定算法。我们旨在开发算法,以在覆盖以色列98%人口的四个健康维护组织(HMO)的数据库中识别炎症性肠病(IBD)患者、疾病发病日期和IBD类型(克罗恩病[CD]与溃疡性结肠炎[UC])。

方法

在对5131例IBD患者和2072例对照进行独立病历审查后(60%为CD,39%为UC)开发算法。我们在数学建模的辅助下审查了942种不同的临床参数组合。这些算法在160000名随机受试者的独立队列中进行了验证。

结果

以下变量的组合实现了最高的诊断准确性:IBD相关代码,若有超过五到六个代码则单独使用,或与购买IBD相关药物(至少三次购买或首次购买到最后一次购买间隔≥3个月)相结合(敏感性89%,特异性99%,阳性预测值[PPV]92%,阴性预测值[NPV]99%)。在没有IBD相关代码或药物的情况下回溯2至5年(取决于HMO)最能确定诊断日期(敏感性83%,特异性68%,PPV 82%,NPV 70%)。IBD类型由最近三次就诊的大多数CD/UC代码确定,若记录的就诊次数少于三次,则由最近一次就诊的代码确定(敏感性92%,特异性97%,PPV 97%,NPV 92%)。应用这些算法,以色列共有38291例IBD患者,患病率为459/100000(0.46%)。

结论

将经过验证的算法应用于以色列的管理数据库,现在将为未来的管理研究创建一个庞大且准确的基于人群的IBD患者持续队列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e72a/5995295/6604a1492348/clep-10-671Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验