School of Physics , University of New South Wales , Sydney NSW 2052 , Australia.
Center for Quantum Devices, Niels Bohr Institute , University of Copenhagen , Copenhagen DK-2100 , Denmark.
Nano Lett. 2018 Jul 11;18(7):4431-4439. doi: 10.1021/acs.nanolett.8b01519. Epub 2018 Jun 27.
We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 10 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.
我们报告了一种纳米线场效应晶体管的开发,其特点是采用超薄聚对二甲苯薄膜作为聚合物栅极绝缘体。室温下,气相沉积的聚对二甲苯是一种有吸引力的替代物,可替代使用原子层沉积在高温下制备的氧化物绝缘体。我们讨论了我们定制的聚对二甲苯沉积系统,该系统专为在生长衬底上垂直站立的 III-V 纳米线上可靠且受控地沉积厚度小于 100nm 的聚对二甲苯薄膜而设计,或者在器件衬底上水平沉积。前一种情况得到了完全覆盖的纳米线,我们使用这些纳米线制作了功能齐全的 Ω 栅极和全环绕栅极结构。这些结构在室温下的亚阈值摆幅低至 140mV/dec,开关比超过 10。对于全环绕栅极结构,我们开发了一种新的制造策略,克服了以前横向环绕栅纳米线晶体管的一些局限性。最后,我们表明,聚对二甲苯可以沉积在经过化学处理的纳米线表面上,而原子层沉积产生的氧化物通常由于表面“自清洁”效应而无法实现这一功能。我们的结果突出了聚对二甲苯作为更广泛的纳米电子器件中替代超薄绝缘体的潜力,由于聚对二甲苯具有良好的生物相容性,其潜在应用可以扩展到纳米生物电子学领域。