Suppr超能文献

WNK-SPAK/OSR1 信号通路:昆虫肾上皮细胞研究获得的启示。

WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium.

机构信息

Department of Internal Medicine, Division of Nephrology and Hypertension, Molecular Medicine Program, University of Utah , Salt Lake City, Utah.

出版信息

Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F903-F907. doi: 10.1152/ajprenal.00176.2018. Epub 2018 Jun 20.

Abstract

WNK [with no lysine (K)] kinases regulate renal epithelial ion transport to maintain homeostasis of electrolyte concentrations, extracellular volume, and blood pressure. The SLC12 cation-chloride cotransporters, including the sodium-potassium-2-chloride (NKCC) and sodium chloride cotransporters (NCC), are targets of WNK regulation via the intermediary kinases SPAK (Ste20-related proline/alanine-rich kinase) and OSR1 (oxidative stress response). The pathway is activated by low dietary potassium intake, resulting in increased phosphorylation and activity of NCC. Chloride regulates WNK kinases in vitro by binding to the active site and inhibiting autophosphorylation and has been proposed to modulate WNK activity in the distal convoluted tubule in response to low dietary potassium. WNK-SPAK/OSR1 regulation of NKCC-dependent ion transport is evolutionarily ancient, and it occurs in the Drosophila Malpighian (renal) tubule. Here, we review recent studies from the Drosophila tubule demonstrating cooperative roles for chloride and the scaffold protein Mo25 (mouse protein-25, also known as calcium-binding protein-39) in the regulation of WNK-SPAK/OSR1 signaling in a transporting renal epithelium. Insights gained from this genetically manipulable and physiologically accessible epithelium shed light on molecular mechanisms of regulation of the WNK-SPAK/OSR1 pathway, which is important in human health and disease.

摘要

无赖氨酸激酶(WNK)调节肾脏上皮细胞离子转运,以维持电解质浓度、细胞外液量和血压的内环境稳定。SLC12 阳离子-氯离子共转运体,包括钠-钾-2-氯(NKCC)和钠-氯共转运体(NCC),是 WNK 调节的靶点,其通过中间激酶 SPAK(Ste20 相关脯氨酸/丙氨酸丰富激酶)和 OSR1(氧化应激反应)进行调节。该途径被低钾饮食所激活,导致 NCC 的磷酸化和活性增加。氯离子通过结合到活性部位并抑制自身磷酸化来调节 WNK 激酶的体外活性,并且被提出可以调节远端卷曲小管中的 WNK 活性以应对低钾饮食。WNK-SPAK/OSR1 对 NKCC 依赖性离子转运的调节是古老的进化机制,并且它发生在果蝇的马氏管(肾脏)小管中。在这里,我们回顾了来自果蝇小管的最新研究,这些研究证明了氯离子和支架蛋白 Mo25(小鼠蛋白-25,也称为钙结合蛋白-39)在调节运输肾上皮细胞中的 WNK-SPAK/OSR1 信号转导中的协同作用。从这个遗传上可操作和生理上可访问的上皮细胞中获得的见解揭示了 WNK-SPAK/OSR1 途径调节的分子机制,这对人类健康和疾病非常重要。

相似文献

1
WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium.WNK-SPAK/OSR1 信号通路:昆虫肾上皮细胞研究获得的启示。
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F903-F907. doi: 10.1152/ajprenal.00176.2018. Epub 2018 Jun 20.
5
WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.WNK 体聚集 WNK4 和 SPAK/OSR1 以促进低钾血症中 NCC 的激活。
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F216-F228. doi: 10.1152/ajprenal.00232.2019. Epub 2019 Nov 18.

引用本文的文献

2
Function and regulation of the insect NaCCC2 sodium transport proteins.昆虫 NaCCC2 钠转运蛋白的功能和调节。
Comp Biochem Physiol A Mol Integr Physiol. 2024 Oct;296:111685. doi: 10.1016/j.cbpa.2024.111685. Epub 2024 Jun 22.
6
Molecular Crowding: Physiologic Sensing and Control.分子拥挤:生理感知与调控
Annu Rev Physiol. 2024 Feb 12;86:429-452. doi: 10.1146/annurev-physiol-042222-025920. Epub 2023 Nov 6.
7
Unanticipated domain requirements for Drosophila Wnk kinase in vivo.果蝇 Wnk 激酶体内意料之外的结构域需求。
PLoS Genet. 2023 Oct 11;19(10):e1010975. doi: 10.1371/journal.pgen.1010975. eCollection 2023 Oct.

本文引用的文献

2
Differential roles of WNK4 in regulation of NCC in vivo.WNK4 在体内调控 NCC 中的差异作用。
Am J Physiol Renal Physiol. 2018 May 1;314(5):F999-F1007. doi: 10.1152/ajprenal.00177.2017. Epub 2018 Jan 31.
3
WNK Kinases in Development and Disease.发育与疾病中的WNK激酶
Curr Top Dev Biol. 2017;123:1-47. doi: 10.1016/bs.ctdb.2016.08.004. Epub 2016 Sep 28.
9
SPAK-mediated NCC regulation in response to low-K+ diet.SPAK介导的对低钾饮食的NCC调节。
Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F923-31. doi: 10.1152/ajprenal.00388.2014. Epub 2015 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验