National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
BMC Plant Biol. 2018 Jun 20;18(1):127. doi: 10.1186/s12870-018-1346-x.
Numerous regulatory genes participate in plant thermotolerance. In Arabidopsis, HEAT-INDUCED TAS1 TARGET2 (HTT2) is an important thermotolerance gene that is silenced by ta-siR255, a trans-acting siRNA. ta-siR255 is absent from heading Chinese cabbage (Brassica rapa ssp. pekinensis). Our previous attempt to overexpress the endogenous BrpHTT2 gene of heading Chinese cabbage (B. rapa ssp. pekinensis) failed because of cosuppression. In theory, heading Chinese cabbage can overexpress Arabidopsis HTT2 to improve thermotolerance in the absence of ta-siR255-mediated gene silencing and the weak potential of coexpression.
To test the potential application of HTT2 in improving crop thermotolerance, we transferred p35S::HTT2 to heading Chinese cabbage. We tested the leaf electrical conductivity, hypocotyl elongation, and survival percentage of p35S::HTT2 plants subjected to high-temperature (38 °C) and heat-shock (46 °C) treatment. The leaf electrical conductivity of p35S::HTT2 seedlings under high temperature decreased but did negligibly change under heat shock. The hypocotyl length of p35S::HTT2 seedlings increased under high temperature and heat shock. The survival rate of p35S::HTT2 seedlings increased under heat shock. BrpHsfs, a subset of heat-shock factor genes, were upregulated in p35S::HTT2 plants under high-temperature and heat shock conditions. In the field, transgenic plants with HTT2 appeared greener and formed leafy heads earlier than wild-type plants.
Exogenous HTT2 increased the survival rates of heat-shocked heading Chinese cabbage by promoting thermotolerance through decreasing electrical conductivity and extending hypocotyl length. Our work provides a new approach to the genetic manipulation of thermotolerance in crops through the introduction of exogenous thermotolerance genes.
许多调控基因参与植物耐热性。在拟南芥中,热诱导 TAS1 靶标 2(HTT2)是一个重要的耐热基因,它被反式作用 siRNA ta-siR255 沉默。ta-siR255 在结球白菜( Brassica rapa ssp. pekinensis )中不存在。我们之前试图过表达结球白菜( Brassica rapa ssp. pekinensis )内源 BrpHTT2 基因,但由于共抑制而失败。理论上,结球白菜可以过表达拟南芥 HTT2,在没有 ta-siR255 介导的基因沉默和弱共表达潜力的情况下提高耐热性。
为了测试 HTT2 在提高作物耐热性方面的应用潜力,我们将 p35S::HTT2 转移到结球白菜中。我们测试了 p35S::HTT2 植株在高温(38°C)和热休克(46°C)处理下的叶片电导率、下胚轴伸长和存活率。p35S::HTT2 幼苗在高温下的叶片电导率降低,但在热休克下变化可忽略不计。p35S::HTT2 幼苗在下胚轴伸长在高温和热休克下增加。p35S::HTT2 幼苗在热休克下的存活率增加。在高温和热休克条件下,p35S::HTT2 植株中一组热休克因子基因 BrpHsfs 上调。在田间,过表达 HTT2 的转基因植株比野生型植株更绿,更早形成叶球。
外源 HTT2 通过降低电导率和延长下胚轴长度来促进耐热性,从而提高热休克结球白菜的存活率。我们的工作为通过引入外源耐热基因对作物耐热性进行遗传操作提供了一种新方法。