Suppr超能文献

(钠+钾)-ATP酶的动力学:通过稳态动力学分析钠和钾的影响

Kinetics of (Na+ + K+)-ATPase: analysis of the influence of Na+ and K+ by steady-state kinetics.

作者信息

Plesner I W, Plesner L

出版信息

Biochim Biophys Acta. 1985 Aug 27;818(2):235-50. doi: 10.1016/0005-2736(85)90564-4.

Abstract

The influence of Na+ and K+ on the steady-state kinetics at 37 degrees C of (Na+ + K+)-ATPase was investigated. From an analysis of the dependence of slopes and intercepts (from double-reciprocal plots or from Hanes plots) of the primary data on Na+ and K+ concentrations a detailed model for the interaction of the cations with the individual steps in the mechanism may be inferred and a set of intrinsic (i.e. cation independent) rate constants and cation dissociation constants are obtained. A comparison of the rate constants with those obtained from an analogous analysis of Na+-ATPase kinetics (preceding paper) provides evidence that the ATP hydrolysis proceeds through a series of intermediates, all of which are kinetically different from those responsible for the Na+-ATPase activity. The complete model for the enzyme thus involves two distinct, but doubly connected, hydrolysis cycles. The model derived for (Na+ + K+)-ATPase has the following properties: The empty, substrate free, enzyme form is the K+-bound form E2K. Na+ (Kd = 9 mM) and MgATP (Kd = 0.48 mM), in that order, must be bound to it in order to effect K+ release. Thus Na+ and K+ are simultaneously present on the enzyme in part of the reaction cycle. Each enzyme unit has three equivalent and independent Na+ sites. K+ binding to high-affinity sites (Kd = 1.4 mM) on the presumed phosphorylated intermediate is preceded by release of Na+ from low-affinity sites (Kd = 430 mM). The stoichiometry is variable, and may be Na:K:ATP = 3:2:1. To the extent that the transport properties of the enzyme are reflected in the kinetic ATPase model, these properties are in accord with one of the models shown by Sachs ((1980) J. Physiol. 302, 219-240) to give a quantitative fit of transport data for red blood cells.

摘要

研究了Na⁺和K⁺对37℃时(Na⁺ + K⁺)-ATP酶稳态动力学的影响。通过分析原始数据的斜率和截距(来自双倒数图或Hanes图)对Na⁺和K⁺浓度的依赖性,可以推断出阳离子与机制中各个步骤相互作用的详细模型,并获得一组内在的(即与阳离子无关的)速率常数和阳离子解离常数。将这些速率常数与从Na⁺-ATP酶动力学的类似分析(前文)中获得的速率常数进行比较,结果表明ATP水解通过一系列中间体进行,所有这些中间体在动力学上都与负责Na⁺-ATP酶活性的中间体不同。因此,该酶的完整模型涉及两个不同但双连接的水解循环。为(Na⁺ + K⁺)-ATP酶推导的模型具有以下特性:空的、无底物的酶形式是与K⁺结合的形式E2K。Na⁺(Kd = 9 mM)和MgATP(Kd = 0.48 mM)必须按此顺序与之结合,以实现K⁺的释放。因此,在部分反应循环中,Na⁺和K⁺同时存在于酶上。每个酶单位有三个等效且独立的Na⁺位点。在K⁺与假定的磷酸化中间体上的高亲和力位点(Kd = 1.4 mM)结合之前,Na⁺先从低亲和力位点(Kd = 430 mM)释放。化学计量是可变的,可能为Na:K:ATP = 3:2:1。就酶的转运特性在动力学ATP酶模型中的体现而言,这些特性与Sachs((1980年)《生理学杂志》302卷,219 - 240页)所示的能对红细胞转运数据进行定量拟合的模型之一相符。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验