Suppr超能文献

白质结构连接可预测非音乐人士短期旋律和节奏学习。

White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians.

机构信息

Department of Cognition, Development and Education Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, Pavelló de Govern - Edifici Modular, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Laboratory for Motor Learning and Neural Plasticity, Concordia University, 7141 Rue Sherbrooke West, H4B 1R6, Montreal, QC, Canada.

Department of Cognition, Development and Education Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, Pavelló de Govern - Edifici Modular, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.

出版信息

Neuroimage. 2018 Nov 1;181:252-262. doi: 10.1016/j.neuroimage.2018.06.054. Epub 2018 Jun 19.

Abstract

Music learning has received increasing attention in the last decades due to the variety of functions and brain plasticity effects involved during its practice. Most previous reports interpreted the differences between music experts and laymen as the result of training. However, recent investigations suggest that these differences are due to a combination of genetic predispositions with the effect of music training. Here, we tested the relationship of the dorsal auditory-motor pathway with individual behavioural differences in short-term music learning. We gathered structural neuroimaging data from 44 healthy non-musicians (28 females) before they performed a rhythm- and a melody-learning task during a single behavioural session, and manually dissected the arcuate fasciculus (AF) in both hemispheres. The macro- and microstructural organization of the AF (i.e., volume and FA) predicted the learning rate and learning speed in the musical tasks, but only in the right hemisphere. Specifically, the volume of the right anterior segment predicted the synchronization improvement during the rhythm task, the FA in the right long segment was correlated with the learning rate in the melody task, and the volume and FA of the right whole AF predicted the learning speed during the melody task. This is the first study finding a specific relation between different branches within the AF and rhythmic and melodic materials. Our results support the relevant function of the AF as the structural correlate of both auditory-motor transformations and the feedback-feedforward loop, and suggest a crucial involvement of the anterior segment in error-monitoring processes related to auditory-motor learning. These findings have implications for both the neuroscience of music field and second-language learning investigations.

摘要

在过去的几十年中,由于音乐学习过程中涉及到的多种功能和大脑可塑性效应,音乐学习受到了越来越多的关注。大多数先前的报告将音乐专家和非专业人士之间的差异解释为训练的结果。然而,最近的研究表明,这些差异是由于遗传倾向与音乐训练的综合影响所致。在这里,我们测试了背侧听觉-运动通路与短期音乐学习中个体行为差异之间的关系。我们从 44 名健康的非音乐家(28 名女性)中收集了结构神经影像学数据,这些人在单个行为会议期间进行了节奏和旋律学习任务,并且手动解剖了双侧弓状束(AF)。AF 的宏观和微观结构组织(即体积和 FA)预测了音乐任务中的学习率和学习速度,但仅在右半球。具体而言,右前节的体积预测了节奏任务中的同步改善,右长节中的 FA 与旋律任务中的学习率相关,而右整个 AF 的体积和 FA 预测了旋律任务中的学习速度。这是第一项发现 AF 内不同分支与节奏和旋律材料之间存在特定关系的研究。我们的研究结果支持了 AF 作为听觉-运动转换和反馈-前馈回路的结构相关物的相关功能,并表明前部节段在与听觉-运动学习相关的错误监测过程中起着至关重要的作用。这些发现对音乐科学领域和第二语言学习研究都具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验