Lazzari Giorgio, Costantini Giulio, La Rocca Stefania, Massironi Andrea, Cattaneo Luigi, Penhune Virginia, Lega Carlotta
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
Department of Psychology, University of Milano-Bicocca, Milan, Italy.
Hum Brain Mapp. 2025 May;46(7):e70225. doi: 10.1002/hbm.70225.
Humans can flexibly extract a regular beat from complex rhythmic auditory patterns, as often occurs in music. Contemporary models of beat perception suggest that the premotor cortex (PMC) and the supplementary motor area (SMA) are integral to this process. However, how these motor planning regions actively contribute to beat perception, along with any potential hemispheric specialization, remains open questions. Therefore, following the validation of stimuli in a behavioral experiment (Experiment I, N = 29, 12 males, mean age = 23.8 ± 0.7 years), we employed transcranial magnetic stimulation (TMS) to test the causal contribution of these regions to beat perception. In Experiment II (N = 40, 16 males, mean age = 23.2 ± 2.37 years), we applied online repetitive TMS (rTMS) over a defined grid encompassing the right rostral and caudal dPMC, SMA, and pre-SMA, and a sham control location. Results showed that stimulation of the caudal portion of right dPMC selectively affected beat perception compared to all other regions. In Experiment III (preregistered, N = 42, 17 males, mean age = 23.5 ± 2.61 years), we tested the lateralization of this contribution by applying rTMS over right and left caudal dPMC. Our results showed that only stimulation over right, but not left, dPMC modulated beat perception. Finally, across all three experiments, individual differences in musical reward predicted beat perception sensitivity. Together, these results support the causal role of the right dPMC in generating internal action predictions and perceptual expectations regarding ongoing sequential events, in line with recent models emphasizing the role of the dorsal auditory stream in beat-based temporal perception. These findings offer valuable insights into the functional organization of the premotor cortex, contributing to a deeper understanding of the neural mechanisms involved in human rhythm perception.
人类能够从复杂的节奏性听觉模式中灵活地提取出规则节拍,这在音乐中经常出现。当代节拍感知模型表明,运动前区皮质(PMC)和辅助运动区(SMA)是这一过程不可或缺的部分。然而,这些运动规划区域如何积极地促进节拍感知,以及是否存在任何潜在的半球特化,仍然是悬而未决的问题。因此,在行为实验(实验一,N = 29,12名男性,平均年龄 = 23.8 ± 0.7岁)中对刺激进行验证之后,我们采用经颅磁刺激(TMS)来测试这些区域对节拍感知的因果贡献。在实验二(N = 40,16名男性,平均年龄 = 23.2 ± 2.37岁)中,我们在一个定义好的网格上施加在线重复经颅磁刺激(rTMS),该网格覆盖右侧嘴侧和尾侧背侧运动前区皮质、辅助运动区和运动前辅助区,以及一个假刺激对照位置。结果表明,与所有其他区域相比,刺激右侧背侧运动前区皮质的尾侧部分对节拍感知有选择性影响。在实验三(预先注册,N = 42,17名男性,平均年龄 = 23.5 ± 2.61岁)中,我们通过在右侧和左侧尾侧背侧运动前区皮质上施加rTMS来测试这种贡献的侧化情况。我们的结果表明,只有对右侧而非左侧背侧运动前区皮质的刺激调节了节拍感知。最后,在所有三个实验中,音乐奖赏的个体差异预测了节拍感知敏感性。总之,这些结果支持了右侧背侧运动前区皮质在生成关于正在进行序列事件的内部动作预测和知觉期望方面的因果作用,这与最近强调背侧听觉通路在基于节拍的时间感知中作用的模型一致。这些发现为运动前区皮质的功能组织提供了有价值的见解,有助于更深入地理解人类节奏感知所涉及神经机制。