Ahn Koree W, Root Michael J
From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
From the Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
J Biol Chem. 2017 Oct 6;292(40):16498-16510. doi: 10.1074/jbc.M117.791731. Epub 2017 Jul 10.
The homotrimeric HIV-1 envelope glycoprotein (Env) undergoes receptor-triggered structural changes that mediate viral entry through membrane fusion. This process is inhibited by chemokine receptor antagonists (CoRAs) that block Env-receptor interactions and by fusion inhibitors (FIs) that disrupt Env conformational transitions. Synergy between CoRAs and FIs has been attributed to a CoRA-dependent decrease in the rate of viral membrane fusion that extends the lifetime of the intermediate state targeted by FIs. Here, we demonstrated that the magnitude of CoRA/FI synergy unexpectedly depends on FI-binding affinity and the stoichiometry of chemokine receptor binding to trimeric Env. For C-peptide FIs (clinically represented by enfuvirtide), synergy waned as binding strength decreased until inhibitor combinations behaved additively. Curiously, this affinity dependence on synergy was absent for 5-Helix-type FIs. We linked this complex behavior to the CoRA dependence of Env deactivation following FI binding. For both FI classes, reducing chemokine receptor levels on target cells or eliminating competent chemokine receptor-binding sites on Env trimers resulted in a loss of synergistic activity. These data imply that the stoichiometry required for CoRA/FI synergy exceeds that required for HIV-1 entry. Our analysis suggests two distinct roles for chemokine receptor binding, one to trigger formation of the FI-sensitive intermediate state and another to facilitate subsequent conformational transitions. Together, our results could explain the wide variety of previously reported activities for CoRA/FI combinations. These findings also have implications for the combined use of CoRAs and FIs in antiviral therapies and point to a multifaceted role for chemokine receptor binding in promoting HIV-1 entry.
同三聚体的HIV-1包膜糖蛋白(Env)会经历受体触发的结构变化,该变化通过膜融合介导病毒进入。趋化因子受体拮抗剂(CoRAs)可阻断Env-受体相互作用,融合抑制剂(FIs)则可破坏Env构象转变,从而抑制这一过程。CoRAs与FIs之间的协同作用归因于CoRA依赖性的病毒膜融合速率降低,这延长了FIs靶向的中间状态的寿命。在此,我们证明,CoRA/FI协同作用的强度出人意料地取决于FI结合亲和力以及趋化因子受体与三聚体Env结合的化学计量。对于C肽FIs(临床上以恩夫韦肽为代表),随着结合强度降低,协同作用减弱,直到抑制剂组合表现为相加作用。奇怪的是,对于5-螺旋型FIs,这种对协同作用的亲和力依赖性并不存在。我们将这种复杂行为与FI结合后Env失活的CoRA依赖性联系起来。对于这两类FI,降低靶细胞上的趋化因子受体水平或消除Env三聚体上有功能的趋化因子受体结合位点都会导致协同活性丧失。这些数据表明,CoRA/FI协同作用所需的化学计量超过了HIV-1进入所需的化学计量。我们的分析表明趋化因子受体结合有两个不同的作用,一个是触发FI敏感中间状态的形成,另一个是促进随后的构象转变。总之,我们的结果可以解释先前报道的CoRA/FI组合的多种活性。这些发现也对抗病毒疗法中CoRAs和FIs的联合使用有启示意义,并指出趋化因子受体结合在促进HIV-1进入中具有多方面作用。