School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Department of Systems Innovation, Osaka University, Osaka 560-8531, Japan.
Sensors (Basel). 2018 Jun 22;18(7):2002. doi: 10.3390/s18072002.
The demand for a harmless noncontact trapping and transportation method in manipulation and measurement of biological micro objects waits to be met. In this paper, a novel micromanipulation method named “Hydrodynamic Tweezers” using the vortex induced by oscillating a single piezoelectric actuator is introduced. The piezoelectric actuator is set between a micropipette and a copper beam. Oscillating the actuator at a certain frequency causes the resonance of the copper beam and extend 1D straight oscillation of the piezoelectric actuator to 2D circular oscillation of the micropipette, which induces a micro vortex after putting the micropipette into fluid. The induced vortex featuring low pressure in its core area can trap the object nearby. A robotic micromanipulator is utilized to transport the trapped objects together with the micropipette. Experiments of trapping and transportation microbeads are carried out to characterize the key parameters. The results show that the trapping force can be controlled by adjusting peak-peak voltage of the sinusoidal voltage input into the piezoelectric actuator.
在生物微观物体的操作和测量中,人们需要一种无害的非接触式捕获和传输方法。本文提出了一种新的微操作方法,即利用单个压电执行器振动产生的旋涡的“流体力镊”。将压电执行器设置在微管和铜梁之间。以一定的频率振动执行器会引起铜梁的共振,并将压电执行器的一维直线振动扩展为微管的二维圆形振动,将微管放入流体后会产生微旋涡。旋涡核心区域的低压能捕获附近的物体。利用机器人微操纵器与微管一起运输捕获的物体。进行了捕获和运输微珠的实验,以表征关键参数。结果表明,通过调节正弦电压输入到压电执行器的峰峰值电压,可以控制捕获力。