Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany.
Graduate School of Excellence, Materials Science in Mainz (MAINZ), 55099 Mainz, Germany.
Phys Rev Lett. 2018 Jun 8;120(23):237201. doi: 10.1103/PhysRevLett.120.237201.
We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn_{2}Au a prime candidate for antiferromagnetic ultrafast memory applications.
我们观察到在太赫兹(THz)范围内由最近发现的尼尔自旋轨道扭矩(NSOT)驱动的集体模式激发。对温度依赖的太赫兹光谱学的研究揭示了一个强吸收模式,其中心在 1 THz 附近,在从 4 K 加热到 450 K 的过程中,该模式软化并失去强度。与估计的本征模式频率的比较表明,观察到的模式是面内反铁磁共振(AFMR)。反铁磁共振吸收强度超过了由 THz 辐射磁场驱动的反铁磁绝缘体中的吸收强度,超过了 3 个数量级。基于这一点以及与我们的理论模型的一致性,我们推断观察到的模式的驱动机制是电流诱导的 NSOT。在这里,THz 脉冲的电场分量驱动金属中的交流电流,随后驱动反铁磁共振。这种对尼尔有序参数的高频电操控使 Mn2Au 成为反铁磁超快存储应用的主要候选材料。