Tang Junyu, Zhang Hantao, Cheng Ran
Department of Physics and Astronomy, University of California, Riverside, CA, USA.
Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA.
Nat Commun. 2025 Aug 21;16(1):7790. doi: 10.1038/s41467-025-63171-1.
Interplay between topological electrons and magnetic ordering enables efficient electrical control of magnetism. We extend the Kane-Mele model to include the exchange coupling to a collinear antiferromagnetic (AFM) order, which allows the system to exhibit the quantum anomalous Hall and quantum spin Hall effects in the absence of a net magnetization. These topological phases support a staggered Edelstein effect through which an applied electric field can generate opposite non-equilibrium spins on the two AFM sublattices, realizing the Néel-type spin-orbit torque (NSOT). Contrary to known NSOTs in AFM metals driven by conduction currents, our NSOT arises from pure adiabatic currents devoid of Joule heating, while being a bulk effect not carried by the edge currents. By virtue of the NSOT, the electric field of a microwave can drive the AFM resonance with a remarkably high efficiency, outpacing the magnetic field-induced AFM resonance by orders of magnitude in terms of power absorption.
拓扑电子与磁有序之间的相互作用实现了对磁性的高效电控制。我们扩展了凯恩 - 梅勒模型,使其包含与共线反铁磁(AFM)序的交换耦合,这使得系统在没有净磁化的情况下能够展现出量子反常霍尔效应和量子自旋霍尔效应。这些拓扑相支持一种交错的埃德尔斯坦效应,通过该效应,施加的电场可以在两个AFM子晶格上产生相反的非平衡自旋,从而实现奈尔型自旋 - 轨道转矩(NSOT)。与由传导电流驱动的AFM金属中已知的NSOT不同,我们的NSOT源自纯绝热电流,不存在焦耳热,同时它是一种体效应,不由边缘电流承载。借助NSOT,微波电场能够以极高的效率驱动AFM共振,在功率吸收方面,其比磁场诱导的AFM共振高出几个数量级。